{"title":"Octopamine is involved in TRP-induced thermopreference responses in American cockroach","authors":"Maliszewska Justyna, Jankowska Milena, Rogalska Justyna","doi":"10.1016/j.jinsphys.2023.104597","DOIUrl":"10.1016/j.jinsphys.2023.104597","url":null,"abstract":"<div><p>Insects’ thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in <em>Periplaneta americana</em>. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine – octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches’ grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches’ response to capsaicin – thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"152 ","pages":"Article 104597"},"PeriodicalIF":2.2,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas T. Austin , Charlie Woodrow , James Pinchin , Fernando Montealegre-Z , Ben Warren
{"title":"Effects of age and noise on tympanal displacement in the Desert Locust","authors":"Thomas T. Austin , Charlie Woodrow , James Pinchin , Fernando Montealegre-Z , Ben Warren","doi":"10.1016/j.jinsphys.2023.104595","DOIUrl":"10.1016/j.jinsphys.2023.104595","url":null,"abstract":"<div><p><span><span>Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing </span>tympani<span><span> evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the </span>desert Locust, </span></span><em>Schistocerca gregaria</em>, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"152 ","pages":"Article 104595"},"PeriodicalIF":2.2,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probing behavior of the leafhopper analyzed through DC electropenetrography and microscopy","authors":"Jariya Roddee , Jureemart Wangkeeree , Elaine A. Backus , Yupa Hanboonsong","doi":"10.1016/j.jinsphys.2023.104584","DOIUrl":"10.1016/j.jinsphys.2023.104584","url":null,"abstract":"<div><p><em>Yamatotettix flavovittatus</em> Matsumara is a new leafhopper species vector of sugarcane white leaf (SCWL) phytoplasma that causes sugarcane chlorosis symptoms. The effects of probing behavior of <em>Y. flavovittatus</em> on sugarcane and its implication for SCWL phytoplasma transmission are yet to be studied. In this research, we used DC electropenetrography (EPG) to define waveforms produced by adult and fifth-instar nymphal <em>Y. flavovittatus</em> on sugarcane and correlated them with salivary sheath termini (likely stylet tip locations) via light and scanning electron microscopy. The following six waveforms and associated activities are described: (NP) non-probing, (Yf1) stylet probing into epidermal cells, (Yf2) stylet probing through mesophyll/parenchyma, (Yf3) stylet contact with phloem and likely watery salivation, (Yf4) active ingestion of sap from phloem, probably sieve elements, and (Yf5) unknown stylet activity in multiple cell types. Study findings reveal that the <em>Y. flavovittatus</em> vector ingests sieve tube element more frequently and for longer durations than any other cell type, supporting that <em>Y. flavovittatus</em> is primarily a phloem feeder. Adult <em>Y. flavovittatus</em> show a longer total probing duration and produces a high density of puncture holes on sugarcane leaves. Moreover, probing behaviors revealed that adults typically ingest phloem sap more frequently and for longer durations than fifth-instar nymphs, enhancing sap ingestion. Furthermore, we propose that adults are more likely to acquire (during Yf4) and inoculate (during Yf3) higher amounts of phytoplasma than fifth-instar nymphs. This information on the penetration behavior of leafhopper <em>Y. flavovittatus</em> serves as a basis for advanced studies on the transmission mechanism of SCWL phytoplasma.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104584"},"PeriodicalIF":2.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136397782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional analysis of Ornithine decarboxylase in manipulating the wing dimorphism in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)","authors":"Wan-Xue Li , Jing-Xiang Chen , Chuan-Chuan Zhang, Min-Shi Luo, Wen-Qing Zhang","doi":"10.1016/j.jinsphys.2023.104587","DOIUrl":"10.1016/j.jinsphys.2023.104587","url":null,"abstract":"<div><p>The brown planthopper (BPH, <em>Nilaparvata lugens</em>), a major insect pest of rice, can make a shift in wing dimorphism to adapt to complex external environments. Our previous study showed that <em>NlODC</em> (<em>Ornithine decarboxylase</em> in <em>N. lugens</em>) was involved in wing dimorphism of the brown planthopper. Here, further experiments were conducted to reveal possible molecular mechanism of <em>NlODC</em> in manipulating the wing dimorphism. We found that the long-winged rate (LWR) of BPH was significantly reduced after RNAi of <em>NlODC</em> or injection of DFMO (D, L-α-Difluoromethylornithine), and LWR of males and females significantly decreased by 21.7% and 34.6%, respectively. Meanwhile, we also examined the contents of three polyamines under DFMO treatment and found that the contents of putrescine and spermidine were significantly lower compared to the control. After 3rd instar nymphs were injected with putrescine and spermidine, LWR was increased significantly in both cases, and putrescine was a little bit more effective, with 5.6% increase in males and 11.4% in females. Three days after injection of ds<em>NlODC</em>, injection of putrescine and spermidine rescued LWR to the normal levels. In the regulation of wing differentiation in BPH, <em>NlODC</em> mutually antagonistic to <em>NlAkt</em> may act through other signaling pathways rather than the classical insulin signaling pathway. This study illuminated a physiological function of an <em>ODC</em> gene involved in wing differentiation in insects, which could be a potential target for pest control.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"152 ","pages":"Article 104587"},"PeriodicalIF":2.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138477834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Hatle , Connor R. Clark , Parker Agne , Nicholas Strasser , Juliana Arcaro , Emma N. Kordek , Kendal Rogers , Clancy A. Short , Zachary Sahni , Sean Sullivan , Brooke Reams , Selena Halleak
{"title":"The effects of dietary amino acid balance on post-embryonic development in a lubber grasshopper","authors":"John Hatle , Connor R. Clark , Parker Agne , Nicholas Strasser , Juliana Arcaro , Emma N. Kordek , Kendal Rogers , Clancy A. Short , Zachary Sahni , Sean Sullivan , Brooke Reams , Selena Halleak","doi":"10.1016/j.jinsphys.2023.104586","DOIUrl":"10.1016/j.jinsphys.2023.104586","url":null,"abstract":"<div><p>Effects of dietary protein quality on insect development (not just growth) are unclear. Dietary amino acid blends matching yolk proteins support reproduction and juvenile development in <em>Drosophila melanogaster</em>. We matched amino acids to vitellogenin and tested development of juvenile male lubber grasshoppers, which do not produce vitellogenin. Last instars were fed classic dry diets with amino acids substituted for proteins. Matching amino acids to vitellogenin allowed molting to adulthood, while an unmatched isonitrogenous diet did not. Health on dry diets was poor, so we developed wet diets with agar, horse feed, and amino acids. Juveniles fed these diets matched to vitellogenin developed comparably to juveniles fed lettuce. However, wet diets with amino acids dissimilar to vitellogenin (low-quality) slowed development but maintained size at adulthood. We observed no compensatory feeding on low-quality diets. Theory suggests accumulation of proteins permits development. To detect a threshold, we started last juvenile instars on high-quality diets, then abruptly switched them to low-qualities diets. When switched to the poor-quality diet at 6<!--> <!-->d, grasshoppers molted at a similar age (∼17<!--> <!-->d) to grasshoppers continuously on the high-quality diet. Total hemolymph proteins levels were unaffected by the timing of diet switches. Last, methionine is essential but can be noxious at high levels. Diets with low-quality protein except for methionine slowed growth early but did not alter the time or size at molt. Overall, the feeding threshold is solely due to essential amino acids, and low-quality protein diets slowed development but did not affect adult size.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104586"},"PeriodicalIF":2.2,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature dependence of gas exchange patterns shift as diapause progresses in the butterfly Pieris napi","authors":"Philip Süess , Kevin T. Roberts , Philipp Lehmann","doi":"10.1016/j.jinsphys.2023.104585","DOIUrl":"10.1016/j.jinsphys.2023.104585","url":null,"abstract":"<div><p>Insects have the capacity to significantly modify their metabolic rate according to environmental conditions and physiological requirement. Consequently, the respiratory patterns can range from continuous gas exchange (CGE) to discontinuous gas exchange (DGE). In the latter, spiracles are kept closed during much of the time, and gas exchange occurs only during short periods when spiracles are opened. While ultimate causes and benefits of DGE remain debated, it is often seen during insect diapause, a deep resting stage that insects induce to survive unfavourable environmental conditions, such as winter. The present study explores the shifts between CGE and DGE during diapause by performing long continuous respirometry measurements at multiple temperatures during key diapause stages in the green-veined white butterfly <em>Pieris napi</em>. The primary goal is to explore respiratory pattern as a non-invasive method to assess whether pupae are in diapause or have transitioned to post-diapause. Respiratory pattern can also provide insight into endogenous processes taking place during diapause, and the prolonged duration of diapause allows for the detailed study of the thermal dependence of the DGE pattern. Pupae change from CGE to DGE a few days after pupation, and this shift coincides with metabolic rate suppression during diapause initiation. Once in diapause, pupae maintain DGE even at elevated temperatures that significantly increase CO<sub>2</sub> production. Instead of shifting respiratory pattern to CGE, pupae increase the frequency of DGE cycles. Since total CO<sub>2</sub> released during a single open phase remains unchanged, our results suggest that <em>P. napi</em> pupae defend a maximum internal ρCO<sub>2</sub> set point, even in their heavily suppressed diapause state. During post-diapause development, CO<sub>2</sub> production increases as a function of development and changes to CGE during temperature conditions permissive for development. Taken together, the results show that respiratory patterns are highly regulated during diapause in <em>P. napi</em> and change predictably as diapause progresses.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104585"},"PeriodicalIF":2.2,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022191023001117/pdfft?md5=e300e7a4c29b3ce33108e26952a6e6b4&pid=1-s2.0-S0022191023001117-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136397783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolína Svobodová , Václav Krištůfek , Jiří Kubásek , Alena Krejčí
{"title":"Alcohol extract of the gypsy mushroom (Cortinarius caperatus) inhibits the development of Deformed wing virus infection in western honey bee (Apis mellifera)","authors":"Karolína Svobodová , Václav Krištůfek , Jiří Kubásek , Alena Krejčí","doi":"10.1016/j.jinsphys.2023.104583","DOIUrl":"10.1016/j.jinsphys.2023.104583","url":null,"abstract":"<div><p>Deformed wing virus (DWV) transmitted by the parasitic mite <em>Varroa destructor</em> is one of the most significant factors contributing to massive losses of managed colonies of western honey bee (<em>Apis mellifera</em>) subspecies of European origin reported worldwide in recent decades. Despite this fact, no antiviral treatment against honey bee viruses is currently available for practical applications and the level of viral infection can only be controlled indirectly by reducing the number of <em>Varroa</em> mites in honey bee colonies. In this study, we investigated the antiviral potential of the gypsy mushroom (<em>Cortinarius caperatus)</em> to reduce DWV infection in honey bees. Our results indicate that the alcohol extract of <em>C. caperatus</em> prevented the development of DWV infection in cage experiments as well as after direct application to honey bee colonies in a field experiment. The applied doses did not shorten the lifespan of honey bees. The reduced levels of DWV in <em>C. caperatus</em>-treated honey bees in cage experiments were accompanied by significant changes in the gene expression of Tep7, Bap1, and Vago. The <em>C. caperatus</em> treatment was not effective against the trypanosomatid <em>Lotmaria passim</em>. No residues of <em>C.caperatus</em> were found in honey harvested in the spring from colonies supplemented with the mushroom extract for their winter feeding. These findings suggest that <em>C. caperatus</em> alcohol extract could be a potential natural remedy to treat DWV infection in honey bees.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"152 ","pages":"Article 104583"},"PeriodicalIF":2.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie A. Mustard , Rachel Dobb , Geraldine A. Wright
{"title":"Chronic nicotine exposure influences learning and memory in the honey bee","authors":"Julie A. Mustard , Rachel Dobb , Geraldine A. Wright","doi":"10.1016/j.jinsphys.2023.104582","DOIUrl":"10.1016/j.jinsphys.2023.104582","url":null,"abstract":"<div><p>In insects, nicotine activates nicotinic acetylcholine receptors, which are expressed throughout the central nervous system. However, little work has been done to investigate the effects of chronic nicotine treatment on learning or other behaviors in non-herbivorous insects. To examine the effects of long term nicotine consumption on learning and memory, honey bees were fed nicotine containing solutions over four days. Bees were able to detect nicotine at 0.1 mM in sucrose solutions, and in a no choice assay, bees reduced food intake when nicotine was 1 mM or higher. Treatment with a low dose of nicotine decreased the proportion of bees able to form an associative memory when bees were conditioned with either a massed or spaced appetitive olfactory training paradigm. On the other hand, higher doses of nicotine increased memory retention and the proportion of bees responding to the odor during 10 min and 24 h recall tests. The reduction in nicotine containing food consumed may also impact response levels during learning and recall tests. These data suggest that long term exposure to nicotine has complex effects on learning and memory.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104582"},"PeriodicalIF":2.2,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71432242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alison N Huffstetler, Gabriela Villalobos, E Marshall Brooks, Adam Funk, Alicia Richards, Roy T Sabo, Michelle S Rockwell, John W Epling, Ben Webel, Alex H Krist
{"title":"The Current State of Alcohol Screening and Management in Virginia Primary Care Practices: An Evaluation of Preventive Service Use.","authors":"Alison N Huffstetler, Gabriela Villalobos, E Marshall Brooks, Adam Funk, Alicia Richards, Roy T Sabo, Michelle S Rockwell, John W Epling, Ben Webel, Alex H Krist","doi":"10.1016/j.mcna.2023.07.001","DOIUrl":"10.1016/j.mcna.2023.07.001","url":null,"abstract":"<p><p>The US Preventive Services Task Force (USPSTF) recommends screening and behavioral counseling for adults over 18 years for unhealthy alcohol use. Recommended screening instruments include the Alcohol Use Disorders Identification Test-Concise and or Single Alcohol Screening Question. Behavioral counseling is feasible in primary care, taking on average 30 minutes. Baseline data for a practice facilitation trial demonstrated clinicians appropriately screened only 10.8% of patients and only identified 9.6% as having risky drinking. Yet, 24% of patients reported risky drinking on a survey, demonstrating the implementation gap of the USPSTF recommendation and opportunity to improve health.</p>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"13 1","pages":"e1-e17"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74763844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellen C. Keaveny , Mitchell R. Helling , Franco Basile , James P. Strange , Jeffrey D. Lozier , Michael E. Dillon
{"title":"Metabolomes of bumble bees reared in common garden conditions suggest constitutive differences in energy and toxin metabolism across populations","authors":"Ellen C. Keaveny , Mitchell R. Helling , Franco Basile , James P. Strange , Jeffrey D. Lozier , Michael E. Dillon","doi":"10.1016/j.jinsphys.2023.104581","DOIUrl":"10.1016/j.jinsphys.2023.104581","url":null,"abstract":"<div><p>Cold tolerance of ectotherms can vary strikingly among species and populations. Variation in cold tolerance can reflect differences in genomes and transcriptomes that confer cellular-level protection from cold; additionally, shifts in protein function and abundance can be altered by other cellular constituents as cold-exposed insects often have shifts in their metabolomes. Even without a cold challenge, insects from different populations may vary in cellular composition that could alter cold tolerance, but investigations of constitutive differences in metabolomes across wild populations remain rare. To address this gap, we reared <em>Bombus vosnesenskii</em> queens collected from Oregon and California (USA) that differ in cold tolerance (CT<sub>min</sub> = -6 °C and 0 °C, respectively) in common garden conditions, and measured offspring metabolomes using untargeted LC-MS/MS. Oregon bees had higher levels of metabolites associated with carbohydrate (sorbitol, lactitol, maltitol, and sorbitol-6-phosphate) and amino acid (hydroxyproline, ornithine, and histamine) metabolism. Exogenous metabolites, likely derived from the diet, also varied between Oregon and California bees, suggesting population-level differences in toxin metabolism. Overall, our results reveal constitutive differences in metabolomes for bumble bees reared in common garden conditions from queens collected in different locations despite no previous cold exposure.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104581"},"PeriodicalIF":2.2,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}