Zixuan Chen , Yujiang Lu , Shanyi Ma , Jianguo Zhang , Xiao Chen , Junfeng Xiao , Jianfeng Xu
{"title":"Mechanism of particulate deposition induced by stray light and laser-induced damage of reflectors","authors":"Zixuan Chen , Yujiang Lu , Shanyi Ma , Jianguo Zhang , Xiao Chen , Junfeng Xiao , Jianfeng Xu","doi":"10.1016/j.jlumin.2024.120964","DOIUrl":"10.1016/j.jlumin.2024.120964","url":null,"abstract":"<div><div>The laser's optical path system comprises numerous optical components. Reflection and scattering from these components result in constant generation of stray light. Stray light is uncontrollable, and every component in the device faces the risk of irradiation. This irradiation can lead to damage and particulate sputtering on metal surfaces within the device, thereby impacting the performance of downstream components. In this study, we researched the contamination process of high-reflectivity multilayer HfO<sub>2</sub>/SiO<sub>2</sub> film components, simulated the process of stray light irradiation on stainless steel components, inducing damage and particulate sputtering through experimentation, and then conducted characterization and damage performance tests on the contaminated samples. When stainless steel is irradiated with low energy density (≥10 mJ/cm<sup>2</sup>) stray light, it produces non-metallic particulate contaminants that affect the components' damage performance. The higher the laser energy density, the more complex the process of generating particulate contaminants and the more severe the impact on damage performance. Through multi-physics simulation and experimental studies on the damage mechanisms of particulate contaminants, the results indicate that characteristics such as composition and dimension of particulate contaminants play different roles in modulating electric field and temperature during laser irradiation processes. This paper elucidates the sputtering behavior of particulate contaminants due to stray light scattering and reveals the characteristics of irradiation response and damage mechanisms of particulates, which is crucial for studying and understanding the impact of stray light on device performance under load. Studying the impact of stray light on protecting optical components in high-power laser device from contaminants is crucial.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120964"},"PeriodicalIF":3.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewa Janik-Zabrotowicz , Marta Arczewska , Jagoda Hamera , Weronika Sofińska-Chmiel , Elżbieta Łastawiecka , Mariusz Gagoś
{"title":"Epoxy resin-mediated transformation of chlorophyll-rich photosynthetic pigments extract into high-yield fluorescent products","authors":"Ewa Janik-Zabrotowicz , Marta Arczewska , Jagoda Hamera , Weronika Sofińska-Chmiel , Elżbieta Łastawiecka , Mariusz Gagoś","doi":"10.1016/j.jlumin.2024.120962","DOIUrl":"10.1016/j.jlumin.2024.120962","url":null,"abstract":"<div><div>Photosynthetic pigments are predominant natural biomacromolecules crucial for light energy absorption and conversion within photosystems. Here, we report the spectroscopic properties of photosynthetic pigments extracted from spinach leaves incorporated in DGEBA (bisphenol A diglycidyl ether)-based epoxy resin. After resin curing, a visible-light-induced transformation of Chl <em>a</em>, likely associated with the opening of the porphyrin ring, occurred. The structure of the linear Chl <em>a</em> derivative was studied using XPS and <sup>1</sup>H NMR techniques. The phototransformed molecule showed a UV–Vis absorption spectrum lacking the characteristic features of macrocyclic tetrapyrrole pigments, with the absorption maxima being shifted toward shorter wavelengths, compared to the intact Chl <em>a</em>. It is proposed that the photoproduct was derived from the regioselective breakdown of Chl <em>a</em> at the C1−C20 bond position. The results indicate the formation of a luciferin analogue from Chl <em>a</em>, for the first time in an artificial system. Moreover, intensive fluorescence emission at 620 nm, visible even to the naked eye in daylight, was detected. The relative fluorescence quantum yield of the obtained linear tetrapyrrole was estimated at 0.68 and was significantly higher than that measured for Chl <em>a</em> in acetone. These findings not only shed light on the mechanisms underlying pigment transformation but also point toward potential applications in next-generation bioelectronics, including artificial light energy converters, and future bio-inspired energy transfer systems. A comprehensive understanding of these processes may facilitate the development of more effective and efficient artificial photosynthetic systems.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120962"},"PeriodicalIF":3.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechano-responsive fluorescent AIE enantiomers with high contrast properties","authors":"Pan-Pan Hua, Jing-Wen Xu, Jun-Fei Li, Yun-Long Fu, Jun-Wen Wang, Li-Fang Zhang","doi":"10.1016/j.jlumin.2024.120963","DOIUrl":"10.1016/j.jlumin.2024.120963","url":null,"abstract":"<div><div>A pair of novel chiral AIE enantiomers (<strong>S-ETMPB</strong> and <strong>R-ETMPB</strong>) with entirely opposite mechanoluminescence activities were demonstrated here. <strong>R-ETMPB</strong> displayed reversible turn-on mechanofluorochromism with a significant increase in quantum yield (QY), whereas <strong>S-ETMPB</strong> exhibited reversible turn-off mechanofluorochromism. Notably, the processes of grinding-fumigation and heating can be repeated over multiple cycles, demonstrating good reversibility without signs of fatigue. The reversible physical transformation between the crystalline and amorphous phases has been shown to account for the distinct mechanofluorochromic behaviors. Furthermore, both enantiomers possess the characteristic property of aggregation-induced emission. As the water content increases, the fluorescence quantum yields of <strong>S-ETMPB</strong> and <strong>R-ETMPB</strong> can significantly rise from 0.56 % to 0.86 % to maximum values of 18.89 % and 23.61 %, resulting in AIE factors of approximately 33.7 for <strong>S-ETMPB</strong> and 27.5 for <strong>R-ETMPB</strong>, respectively.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120963"},"PeriodicalIF":3.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał Maciejewski , Karolina Milewska , Anna Synak , Marcin Łapiński , Wojciech Sadowski , Barbara Kościelska
{"title":"Effect of AlF3 and KF addition on the structure and luminescent properties of P2O5 – K2O – Nb2O5 – Bi2O3 glasses doped with Eu3+","authors":"Michał Maciejewski , Karolina Milewska , Anna Synak , Marcin Łapiński , Wojciech Sadowski , Barbara Kościelska","doi":"10.1016/j.jlumin.2024.120954","DOIUrl":"10.1016/j.jlumin.2024.120954","url":null,"abstract":"<div><div>Based on the developed phosphate glasses P<sub>2</sub>O<sub>5</sub>–K<sub>2</sub>O–Bi<sub>2</sub>O<sub>3</sub>–Nb<sub>2</sub>O<sub>5</sub> doped with Eu<sup>3+</sup>, the influence of AlF<sub>3</sub> and KF on the structural and luminescent properties was investigated. For this purpose, three series of glasses containing from 5 to 15 mol% fluorides were synthesized. Two of the series included the KF additive, which was introduced in two ways - proportionally and disproportionately at the expense of the K<sub>2</sub>O share. The structural characterization (XRD, FTIR) allowed us to determine the evolution of the internal structure of the glasses caused by changes in the type and content of the introduced additives and the presence of the Eu dopant. Similarly, using DSC/DTA, the thermal properties of undoped matrices were defined. The luminescence enhancement caused by the addition of ≥10 mol% fluorides was confirmed by the obtained fluorescence spectra. The presented studies not only expand the state of knowledge about the effects of fluorides on phosphate glasses but also demonstrate the ease of obtaining materials with improved properties suitable for use as phosphor in LEDs.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120954"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan-Yang Wang , Shan-Xiao Wang , Chao-Yang Tian, Li Wang, Rui-Ya Wang, Wen-Li Zhang, Xiao-Yu Li, Li-Hao Wang, Zhi-Cheng Du, Xiang-Wen Kong, Xiao-Wu Lei, Fang Yu
{"title":"Synthesis and stability of one-dimensional red-emitting manganese-based Organic–inorganic halide","authors":"Dan-Yang Wang , Shan-Xiao Wang , Chao-Yang Tian, Li Wang, Rui-Ya Wang, Wen-Li Zhang, Xiao-Yu Li, Li-Hao Wang, Zhi-Cheng Du, Xiang-Wen Kong, Xiao-Wu Lei, Fang Yu","doi":"10.1016/j.jlumin.2024.120960","DOIUrl":"10.1016/j.jlumin.2024.120960","url":null,"abstract":"<div><div>Pb-based halides are a highly promising class of materials due to their exceptional optoelectronic and magnetic properties. However, lead-based halides’ high toxicity and instability have detrimentally affected their actual applications. To address these issues, we investigated a lead-free one-dimensional manganese (Mn)-based organic–inorganic halide (TZI)MnCl<sub>3</sub> (TZI = thiazolidin-3-ium). The red-emitting (TZI)MnCl<sub>3</sub> demonstrated photoluminescence quantum yields of up to 46.4 % and 30.6 % when excited by light at wavelengths of 373 nm and 446 nm, respectively. Furthermore, (TZI)MnCl<sub>3</sub> exhibited high stability under various conditions, highlighting its potential for optoelectronic applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120960"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shixuan Guo , Kejing Liu , Zihang Lin , Zhe Kang , Jinbo Liu , Ziang Yin , Zhuochen Cai , Yi Liu , Xianggang Zhang , Fa Luo , Shitao Xiong , Shusheng Wang , Xuxin He , Aizhong Yue , Qinghua Zhao , Rongrong Guo , Tao Wang
{"title":"Temperature dependence of Ce luminescence characteristics in LaBr3: Ce crystal","authors":"Shixuan Guo , Kejing Liu , Zihang Lin , Zhe Kang , Jinbo Liu , Ziang Yin , Zhuochen Cai , Yi Liu , Xianggang Zhang , Fa Luo , Shitao Xiong , Shusheng Wang , Xuxin He , Aizhong Yue , Qinghua Zhao , Rongrong Guo , Tao Wang","doi":"10.1016/j.jlumin.2024.120956","DOIUrl":"10.1016/j.jlumin.2024.120956","url":null,"abstract":"<div><div>Despite the large interest in the scintillation properties of LaBr<sub>3</sub>:Ce, a detailed understanding of the underlying mechanism of temperature-dependence properties of Ce luminescence remains elusive. This study introduces a self-designed spectral apparatus to explore these properties in LaBr<sub>3</sub>:5%Ce. We observed a redshift phenomenon and band changes in the emission peak bands, indicating a reduction of the bond length between Ce and the host with increasing temperature. Moreover, the probability of low-energy peak emission decreases and the probability of high-energy peak emission increases, with increasing temperature was observed, suggesting a correlation with the proximity of Ce's 4f energy level to the valence band. Utilizing intensity parameters from the spectra, we identified the impact of temperature on LaBr<sub>3</sub>:Ce's self-absorption effect, revealing a significant self-absorption effect at the high-energy peak for the first time. A simple self-absorption model indicated that, despite high quantum efficiency of Ce, the overall self-absorption is minimal, establishing a correlation between the self-absorption coefficient of the high-energy peak and overall absorption. This research offers insights for developing radiation-resistant high-temperature luminescent devices and advances the field of high-temperature luminescent materials.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120956"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Itália V. Barbosa , Géraldine Dantelle , Célio V.T. Maciel , André L. Moura , Alain Ibanez , Lauro J.Q. Maia
{"title":"Comparison of YAG:Nd3+-Yb3+ nanothermometers synthesized by Pechini and solvothermal methods","authors":"Itália V. Barbosa , Géraldine Dantelle , Célio V.T. Maciel , André L. Moura , Alain Ibanez , Lauro J.Q. Maia","doi":"10.1016/j.jlumin.2024.120947","DOIUrl":"10.1016/j.jlumin.2024.120947","url":null,"abstract":"<div><div>Luminescence intensity ratio-based nanothermometry is a widely studied thermal sensing technique in the literature. Regarding biological purposes, it is essential to have thermal probes that are efficient in this type of environment. Thermal bioprobes demand highly crystallized nanocrystals, commonly smaller than 100 nm, with luminescence emissions in the near-infrared range that are not significantly absorbed by biological tissues. Several nanomaterials that have been studied for nanothermometry do not meet the requirements for this type of applications. Accordingly, researches are needed to develop suitable and reliable nanothermometers for thermal sensing. Therefore, our goal was to investigate the impact of Nd<sup>3+</sup>-Yb<sup>3+</sup> co-doping on the thermometric performance of YAG matrix, a promising crystal because it presents a host structure favoring the insertion of lanthanide ions, which provide its luminescent features. In order to achieve this purpose, we first synthesized YAG:Nd<sup>3+</sup>-Yb<sup>3+</sup> nanocrystals through a generic route - called modified Pechini method - to screen their thermal properties. Our results show that YAG:Nd<sup>3+</sup>-Yb<sup>3+</sup> nanocrystals have the potential to work in <em>vivo</em> environments. The nanothermometers investigated here are excited in the first biological window (BW-I) at 805 nm with luminescence emissions within the BW-II, at 1030.5 and 1064 nm. By co-doping the YAG matrix with different Nd<sup>3+</sup>-Yb<sup>3+</sup> concentrations, we studied the energy transfer process between the dopant ions and their impact on thermometry efficiency. By the efficient coupling of the Nd<sup>3+</sup>-Yb<sup>3+</sup> pair, we improved the <span><math><mrow><msub><mi>S</mi><mi>r</mi></msub></mrow></math></span> value by a factor of 3 of YAG compounds up to 0.6 %.K<sup>−1</sup>. We then synthesized YAG:Nd<sup>3+</sup>-Yb<sup>3+</sup> nanocrystals using a second type of synthesis, by solvothermal means, in order to obtain individual nanocrystals, well dispersed in aqueous solutions, and to adapt their morphology and size for biological purposes. Therefore, we compared the structural and luminescence properties and thermometry efficiencies of YAG:Nd<sup>3+</sup>-Yb<sup>3+</sup> nanocrystals obtained through two distinct processes and showed that the nanothermometry properties are not affected by the synthesis method.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120947"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaolong Zhao , Bo Xu , Zhongfeng Duan , Aqiang Wang , Hui Qi , Shujie Wang , Binbin Hu
{"title":"Full-angle light out-coupling enhancement of quantum dot light-emitting diodes by Mie-scattering micro-lens arrays","authors":"Yaolong Zhao , Bo Xu , Zhongfeng Duan , Aqiang Wang , Hui Qi , Shujie Wang , Binbin Hu","doi":"10.1016/j.jlumin.2024.120959","DOIUrl":"10.1016/j.jlumin.2024.120959","url":null,"abstract":"<div><div>High efficiency, high brightness, and long-life quantum dot light-emitting diodes (QLEDs) are crucial for realizing integrated display and lighting applications. However, about 80% of the light is confined inside the device with substrate mode, waveguide mode, and plasma mode, which greatly weakens the brightness, efficiency and lifetime of the device. Here, a quasi-periodic concave template with large area was fabricated through the spontaneous condensation of droplets on the substrate surface. Based on the quasi-periodic template, SiO<sub>2</sub> micro-lens arrays (SiO<sub>2</sub>-MLAs) Mie scattering composite structure was fabricated by imprinting on a SiO<sub>2</sub>-nanosphere thin film, which significantly improved light out-coupling at full angles with optimized quasi-Lambertian luminescence characteristics. In comparison to the planar QLED with state-of-the-art, the external quantum efficiency (EQE) demonstrated a qualitative improvement (>20%). Accordingly, the EQE, luminance (L), T<sub>50</sub> lifetime (reduce to half brightness) of the green QLEDs with SiO<sub>2</sub>-MLAs structure have been optimized by 22%, 28%, 31%, and up to 24.21%, 381962.6 cd/m<sup>2</sup>, 111335 h, respectively. This strategy provides valuable insights into mass-producing and utilizing SiO<sub>2</sub>-MLA Mie scattering composite structures to boost QLED performance in high-efficiency display and lighting applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120959"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingyan Qu , Changrui Zhu , Gaoliang Huang , Yang Jiang , Rulong Zhou , Lei Wang
{"title":"Blue-emitting long-persistent luminescence phosphor Pb2+-doped CsCdCl3","authors":"Bingyan Qu , Changrui Zhu , Gaoliang Huang , Yang Jiang , Rulong Zhou , Lei Wang","doi":"10.1016/j.jlumin.2024.120957","DOIUrl":"10.1016/j.jlumin.2024.120957","url":null,"abstract":"<div><div>In our traditional impressions, the emission spectra of Pb<sup>2+</sup> ions usually fall predominantly within the UV region. In this work, we find when coordinated with haloid Cl<sup>−</sup> ions in CsCdCl<sub>3</sub>, the Pb<sup>2+</sup> ions could demonstrate bright blue emission from 350 to 500 nm with maximum peaking at about 412 nm under the excitation of 250–320 nm light. This emission can be assigned to <sup>3</sup>P<sub>1</sub> → <sup>1</sup>S<sub>0</sub> transition of Pb<sup>2+</sup> ions. More interestingly, this all-inorganic metal halide compound CsCdCl<sub>3</sub>:Pb<sup>2+</sup> exhibits a long persistent luminescence (LPL) lasting 1050 s, endowed with application potential in the information storage and function of analysis and detection. The LPL mechanism of Pb<sup>2+</sup> in CsCdCl<sub>3</sub> has been studied by thermoluminescence (TL) measurements and the First-principle calculation, which dominate that the 6p levels of Pb<sup>2+</sup> are just below the conduction band by about 0.6 eV. The excited electrons can travel across these 6p levels and the electron traps through the conduction band thermally, delaying the emission temporarily and producing the afterglow finally. Our finding in this work proves the potential of Pb<sup>2+</sup> activated phosphors in visible region and provides a unique approach to construct Pb<sup>2+</sup> doped LPL phosphors.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120957"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating Nd3+:Na4Y6F22 single crystals as a promising active medium for diode-pumped lasers","authors":"A.K. Naumov , R.D. Aglyamov , V.V. Semashko","doi":"10.1016/j.jlumin.2024.120961","DOIUrl":"10.1016/j.jlumin.2024.120961","url":null,"abstract":"<div><div>The optical and spectroscopic properties and laser performances of Nd<sup>3+</sup>:Na<sub>4</sub>Y<sub>6</sub>F<sub>22</sub> fluoride single crystals were systematically examined. The quasi-CW laser action in Nd<sup>3+</sup>:Na<sub>4</sub>Y<sub>6</sub>F<sub>22</sub> disordered crystals was realized for the first time under 796 nm-diode pumping. The slope efficiency was 5.8 % with a lasing threshold approximately 19 mW in terms of absorbed pumping power. The reasons for the discrepancy between the promising spectral-kinetic characteristics and pure lasing efficiency under diode pumping were elucidated.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120961"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}