Journal of Industrial Microbiology & Biotechnology最新文献

筛选
英文 中文
Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa. 优化肽基脯氨酰顺式/反式转化酶环嗜血素B的表达,使其具有来自球孢子虫的原核毒性。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae017
Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang
{"title":"Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa.","authors":"Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang","doi":"10.1093/jimb/kuae017","DOIUrl":"10.1093/jimb/kuae017","url":null,"abstract":"<p><p>Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB.</p><p><strong>One-sentence summary: </strong>The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation. 评估利用微生物链延伸进行中链油化学合成的可行性。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae027
Ethan Agena, Ian M Gois, Connor M Bowers, Radhakrishnan Mahadevan, Matthew J Scarborough, Christopher E Lawson
{"title":"Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation.","authors":"Ethan Agena, Ian M Gois, Connor M Bowers, Radhakrishnan Mahadevan, Matthew J Scarborough, Christopher E Lawson","doi":"10.1093/jimb/kuae027","DOIUrl":"10.1093/jimb/kuae027","url":null,"abstract":"<p><p>Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range.</p><p><strong>One-sentence summary: </strong>In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions. 探索非常规酵母的木糖代谢:不同通气条件下的动力学特征和产物积累。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae023
Bruna C Bolzico, Sofia Racca, Jorge N Khawam, Rodrigo J Leonardi, Ariel H Tomassi, Maria T Benzzo, Raul N Comelli
{"title":"Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions.","authors":"Bruna C Bolzico, Sofia Racca, Jorge N Khawam, Rodrigo J Leonardi, Ariel H Tomassi, Maria T Benzzo, Raul N Comelli","doi":"10.1093/jimb/kuae023","DOIUrl":"10.1093/jimb/kuae023","url":null,"abstract":"<p><p>d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses.</p><p><strong>One-sentence summary: </strong>This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corn stover variability drives differences in bisabolene production by engineered Rhodotorula toruloides. 玉米秸秆的变异性导致了工程Rhodotorula toruloides产生双酚的差异。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae034
Onyinye Okonkwo, Chang Dou, Ethan Oksen, Akash Narani, Wilian Marcondes, Xiaowen Chen, Joonhoon Kim, Yuqian Gao, Meagan C Burnet, Bobbie-Jo M Webb-Robertson, Brenton C Poirier, Deepti Tanjore, Jon K Magnuson, Nathalie Munoz Munoz, James Gardner
{"title":"Corn stover variability drives differences in bisabolene production by engineered Rhodotorula toruloides.","authors":"Onyinye Okonkwo, Chang Dou, Ethan Oksen, Akash Narani, Wilian Marcondes, Xiaowen Chen, Joonhoon Kim, Yuqian Gao, Meagan C Burnet, Bobbie-Jo M Webb-Robertson, Brenton C Poirier, Deepti Tanjore, Jon K Magnuson, Nathalie Munoz Munoz, James Gardner","doi":"10.1093/jimb/kuae034","DOIUrl":"10.1093/jimb/kuae034","url":null,"abstract":"<p><p>Microbial conversion of lignocellulosic biomass represents an alternative route for production of biofuels and bioproducts. While researchers have mostly focused on engineering strains such as Rhodotorula toruloides for better bisabolene production as a sustainable aviation fuel, less is known about the impact of the feedstock heterogeneity on bisabolene production. Critical material attributes like feedstock composition, nutritional content, and inhibitory compounds can all influence bioconversion. Further, the given feedstocks can have a marked influence on selection of suitable pretreatment and hydrolysis technologies, optimizing the fermentation conditions, and possibly even modifying the microorganism's metabolic pathways, to better utilize the available feedstock. This work aimed to examine and understand how variations in corn stover batches, anatomical fractions, and storage conditions impact the efficiency of bisabolene production by R. toruloides. All of these represent different facets of feedstock heterogeneity. Deacetylation, mechanical refining, and enzymatic hydrolysis of these variable feedstocks served as the basis of this research. The resulting hydrolysates were converted to bisabolene via fermentation, a sustainable aviation fuel precursor, using an engineered R. toruloides strain. This study showed that different sources of feedstock heterogeneity can influence microbial growth and product titer in counterintuitive ways, as revealed through global analysis of protein expression. The maximum bisabolene produced by R. toruloides was on the stalk fraction of corn stover hydrolysate (8.89 ± 0.47 g/L). Further, proteomics analysis comparing the protein expression between the anatomic fractions showed that proteins relating to carbohydrate metabolism, energy production, and conversion as well as inorganic ion transport metabolism were either significantly upregulated or downregulated. Specifically, downregulation of proteins related to the iron-sulfur cluster in stalk fraction suggests a coordinated response by R. toruloides to maintain overall metabolic balance, and this was corroborated by the concentration of iron in the feedstocks.</p><p><strong>One-sentence summary: </strong>This study elucidates the effects of different sources of corn stover on bisabolene production by engineered Rhodotorula toruloides, highlighting the importance of understanding feedstock variability to enhance bioprocess efficiency and economic outcomes.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the fragmentation and separation characteristics of sophorolipid biosurfactants with LC-MS-ESI. 利用 LC-MS-ESI 发现槐脂类生物表面活性剂的碎裂和分离特征。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae035
Benjamin Ingham, Katherine Hollywood, Phavit Wongsirichot, Alistair Veitch, James Winterburn
{"title":"Uncovering the fragmentation and separation characteristics of sophorolipid biosurfactants with LC-MS-ESI.","authors":"Benjamin Ingham, Katherine Hollywood, Phavit Wongsirichot, Alistair Veitch, James Winterburn","doi":"10.1093/jimb/kuae035","DOIUrl":"10.1093/jimb/kuae035","url":null,"abstract":"<p><p>The application of liquid chromatography and mass spectrometry (MS) is a challenging area of research for structural identification of sophorolipids, owing to the large number of possible variations in structure and limited knowledge on the separation and fragmentation characteristics of the variants. The aims of this work was to provide a comprehensive analysis of the expected characteristics and fragmentation patterns of a wide range of sophorolipid biosurfactant congeners, providing a methodology and process alongside freely available data to inform and enable future research of commercial or novel sophorolipids. Samples of acidic and lactonic sophorolipid standards were tested using reverse-phase ultra-high performance liquid chromatography and identified using electrospray ionization MS. 37 sophorolipid variants were identified and compared for their elution order and fragmentation pattern under MS/MS. The retention time of sophorolipids was increased by the presence of lactonization, unsaturation, chain length, and acetylation as hydrophobic interactions with the C18 stationary phase increased. A key finding that acidic forms can elute later than lactonic variants was obtained when the fatty acid length and unsaturation and acetylation are altered, in contradiction to previous literature statements. Fragmentation pathways were determined for lactonic and acidic variants under negative [M-H]- and positive [M+NH4]+ ionization, and unique patterns/pathways were identified to help determine the structural components present. The first publicly available database of chromatograms and MS2 spectra has been made available to aid in the identification of sophorolipid components and provide a reliable dataset to accelerate future research into novel sophorolipids and shorten the time to innovation.</p><p><strong>One-sentence summary: </strong>This article describes the process and challenges in identifying different structures of eco-friendly biosurfactants, providing a novel database to compare results.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of pectinase-producing Saccharomyces cerevisiae UCDFST 09-448 and its effects on cull peach fermentations. 产果胶酶的酿酒酵母 UCDFST 09-448 的特性及其对去核桃发酵的影响。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae037
Aaliyah Raquel Gutierrez-Cano, Bryce Jones, Jordan Macario, Sofia Martin, Derrick Cardenas, Hannah Simpson, Kyria Boundy-Mills, Meredith Claire Edwards
{"title":"Characterization of pectinase-producing Saccharomyces cerevisiae UCDFST 09-448 and its effects on cull peach fermentations.","authors":"Aaliyah Raquel Gutierrez-Cano, Bryce Jones, Jordan Macario, Sofia Martin, Derrick Cardenas, Hannah Simpson, Kyria Boundy-Mills, Meredith Claire Edwards","doi":"10.1093/jimb/kuae037","DOIUrl":"10.1093/jimb/kuae037","url":null,"abstract":"<p><p>Fermentation of pectin-rich biomass by Saccharomyces cerevisiae can produce bioethanol as a fuel replacement to combat carbon dioxide emissions from the combustion of fossil fuels. Saccharomyces cerevisiae UCDFST 09-448 produces its own pectinase enzymes potentially eliminating the need for commercial pectinases during fermentation. This research assessed growth, pectinase activity, and fermentative activity of S. cerevisiae UCDFST 09-448 and compared its performance to an industrial yeast strain, S. cerevisiae XR122N. Saccharomyces cerevisiae UCDFST 09-448's growth was inhibited by osmotic stress (xylose concentrations above 1 M), ethanol concentrations greater than 5% v/v, and temperatures outside of 30°C-37°C. However, S. cerevisiae UCDFST 09-448 was able to consistently grow in an industrial pH range (3-6). It was able to metabolize glucose, sucrose, and fructose but was unable to metabolize arabinose, xylose, and galacturonic acid. The pectinase enzyme produced by S. cerevisiae UCDFST 09-448 was active under typical fermentation conditions (35°C-37°C, pH 5.0). Regardless of S. cerevisiae UCDFST 09-448's limitations when compared to S. cerevisiae XR122N in 15% w/v peach fermentations, S. cerevisiae UCDFST 09-448 was still able to achieve maximum ethanol yields in the absence of commercial pectinases (44.7 ± 3.1 g/L). Under the same conditions, S. cerevisiae XR122N produced 39.5 ± 3.1 g/L ethanol. While S. cerevisiae UCDFST 09-448 may not currently be optimized for industrial fermentations, it is a step toward a consolidated bioprocessing approach to fermentation of pectin-rich biomass.</p><p><strong>One-sentence summary: </strong>Saccharomyces cerevisiae UCDFST 09-448 demonstrates the potential to ferment pectin-rich biomass as part of a consolidated bioprocess, but is sensitive to industrial stressors.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway. 地衣芽孢杆菌通过孪精氨酸转运途径分泌表达淀粉糖化酶
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae004
Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang
{"title":"Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway.","authors":"Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang","doi":"10.1093/jimb/kuae004","DOIUrl":"10.1093/jimb/kuae004","url":null,"abstract":"<p><p>Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production.</p><p><strong>One-sentence summary: </strong>Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of lactic acid production from coffee grounds hydrolysate by fermentation with Lacticaseibacillus rhamnosus. 利用鼠李糖乳杆菌发酵从咖啡渣水解物中生产乳酸的发展。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae032
Łukasz Wysocki, Patrycja Adamczuk, Paula Bardadyn, Anna Gabor, Karolina Jelonek, Monika Kudelska, Maksymilian Kukuć, Adrianna Piasek, Marta Pietras, Monika Słomka, Zoja Trojan, Wiktoria Tybulczuk, Anna Sobiepanek, Joanna Żylińska-Urban, Joanna Cieśla
{"title":"Development of lactic acid production from coffee grounds hydrolysate by fermentation with Lacticaseibacillus rhamnosus.","authors":"Łukasz Wysocki, Patrycja Adamczuk, Paula Bardadyn, Anna Gabor, Karolina Jelonek, Monika Kudelska, Maksymilian Kukuć, Adrianna Piasek, Marta Pietras, Monika Słomka, Zoja Trojan, Wiktoria Tybulczuk, Anna Sobiepanek, Joanna Żylińska-Urban, Joanna Cieśla","doi":"10.1093/jimb/kuae032","DOIUrl":"10.1093/jimb/kuae032","url":null,"abstract":"<p><p>Spent coffee grounds (SCG) are commercial waste that are still rich in numerous valuable ingredients and can be further processed into useful products such as coffee oil, antioxidant extract, lactic acid, and lignin. The challenge and innovation is to develop the SCG processing technology, maximizing the use of raw material and minimizing the use of other resources within the sequential process. The presented research is focused on the aspect of biotechnological production of lactic acid from SCG by using the Lacticaseibacillus rhamnosus strain isolated from the environment. Thanks to the optimization of the processes of acid hydrolysis, neutralization, enzymatic hydrolysis of SCG, and fermentation, the obtained concentration of lactic acid was increased after 72 hr of culture from the initial 4.60 g/l to 48.6 g/l. In addition, the whole process has been improved, taking into account the dependence on other processes within the complete SCG biorefinery, economy, energy, and waste aspects. Costly enzymatic hydrolysis was completely eliminated, and it was proven that supplementation of SCG hydrolysate with expensive yeast extract can be replaced by cheap waste from the agri-food industry.</p><p><strong>One-sentence summary: </strong>A process for efficient lactic acid production from spent coffee grounds using the Lacticaseibacillus rhamnosus strain was developed and optimized, including nutrient solution preparation, supplementation and fermentation.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae. 在酿酒酵母中设计生物合成植物异野辛碱和灯盏花碱。
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuad047
Moriel J Dror, Joshua Misa, Danielle A Yee, Angela M Chu, Rachel K Yu, Bradley B Chan, Lauren S Aoyama, Anjali P Chaparala, Sarah E O'Connor, Yi Tang
{"title":"Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae.","authors":"Moriel J Dror, Joshua Misa, Danielle A Yee, Angela M Chu, Rachel K Yu, Bradley B Chan, Lauren S Aoyama, Anjali P Chaparala, Sarah E O'Connor, Yi Tang","doi":"10.1093/jimb/kuad047","DOIUrl":"10.1093/jimb/kuad047","url":null,"abstract":"<p><p>Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30-40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation.</p><p><strong>One sentence summary: </strong>An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138885046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. 探索抗真菌肽治疗广度的前沿:抗真菌药物的新途径。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae018
Ihtisham Ul Haq, Sajida Maryam, Divine Y Shyntum, Taj A Khan, Fan Li
{"title":"Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs.","authors":"Ihtisham Ul Haq, Sajida Maryam, Divine Y Shyntum, Taj A Khan, Fan Li","doi":"10.1093/jimb/kuae018","DOIUrl":"10.1093/jimb/kuae018","url":null,"abstract":"<p><p>The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research.</p><p><strong>One-sentence summary: </strong>This comprehensive review of AFPs will be helpful for further research in antifungal research.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信