对基于 qPCR 的低通量军团菌检测法进行性能评估,以用作现场工业用水系统监控方法。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alexsandra Corrigan, Benjamin Niemaseck, Mackenzie Moore, Douglas McIlwaine, Jeremy Duguay
{"title":"对基于 qPCR 的低通量军团菌检测法进行性能评估,以用作现场工业用水系统监控方法。","authors":"Alexsandra Corrigan, Benjamin Niemaseck, Mackenzie Moore, Douglas McIlwaine, Jeremy Duguay","doi":"10.1093/jimb/kuae030","DOIUrl":null,"url":null,"abstract":"<p><p>Legionella is a bacterial genus found in natural aquatic environments, as well as domestic and industrial water systems. Legionella presents potential human health risks when aerosolized and inhaled by at-risk individuals and is commonly monitored at locations with likelihood of proliferation and human exposure. Legionella monitoring is widely performed using culture-based testing, which faces limitations including turnaround time and interferences. Molecular biology methodologies, including quantitative polymerase chain reaction (qPCR), are being explored to supplement or replace culture-based testing because of faster turnaround and lower detection limits, allowing for more rapid water remediation measures. In this study, three methods were compared by testing industrial water samples: culture-based testing by a certified lab, high throughput qPCR testing (HT qPCR), and field deployable low throughput qPCR testing (LT qPCR). The qPCR test methods reported more positive results than culture testing, indicating improved sensitivity and specificity. The LT qPCR test is portable with quick turnaround times, and can be leveraged for environmental surveillance, process optimization, monitoring, and onsite case investigations. The LT qPCR test had high negative predictive value and would be a useful tool for negative screening of Legionella samples from high-risk environments and/or outbreak investigations to streamline samples for culture testing.</p><p><strong>One-sentence summary: </strong>This study compared three test methods for Legionella to evaluate performance of a low throughput quantitative polymerase chain reaction (LT qPCR) test for Legionella that can be used onsite; the study found that the high throughput (HT) and LT qPCR tests used in this study gave more positive results than culture testing, and the results indicated a similar negative predictive value for the HT and LT qPCR tests, supporting that the LT qPCR method could be useful for negative screening of Legionella samples in industrial water systems onsite.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of a low-throughput qPCR-based Legionella assay for utility as an onsite industrial water system monitoring method.\",\"authors\":\"Alexsandra Corrigan, Benjamin Niemaseck, Mackenzie Moore, Douglas McIlwaine, Jeremy Duguay\",\"doi\":\"10.1093/jimb/kuae030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Legionella is a bacterial genus found in natural aquatic environments, as well as domestic and industrial water systems. Legionella presents potential human health risks when aerosolized and inhaled by at-risk individuals and is commonly monitored at locations with likelihood of proliferation and human exposure. Legionella monitoring is widely performed using culture-based testing, which faces limitations including turnaround time and interferences. Molecular biology methodologies, including quantitative polymerase chain reaction (qPCR), are being explored to supplement or replace culture-based testing because of faster turnaround and lower detection limits, allowing for more rapid water remediation measures. In this study, three methods were compared by testing industrial water samples: culture-based testing by a certified lab, high throughput qPCR testing (HT qPCR), and field deployable low throughput qPCR testing (LT qPCR). The qPCR test methods reported more positive results than culture testing, indicating improved sensitivity and specificity. The LT qPCR test is portable with quick turnaround times, and can be leveraged for environmental surveillance, process optimization, monitoring, and onsite case investigations. The LT qPCR test had high negative predictive value and would be a useful tool for negative screening of Legionella samples from high-risk environments and/or outbreak investigations to streamline samples for culture testing.</p><p><strong>One-sentence summary: </strong>This study compared three test methods for Legionella to evaluate performance of a low throughput quantitative polymerase chain reaction (LT qPCR) test for Legionella that can be used onsite; the study found that the high throughput (HT) and LT qPCR tests used in this study gave more positive results than culture testing, and the results indicated a similar negative predictive value for the HT and LT qPCR tests, supporting that the LT qPCR method could be useful for negative screening of Legionella samples in industrial water systems onsite.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

军团菌是一种存在于自然水生环境以及家庭饮用水和工业非饮用水系统中的细菌。当军团菌被高危人群气溶胶和吸入时,会对人类健康造成潜在风险。这些生物的种群通常在有可能扩散和人类接触的地方进行监测。本研究特别关注的是工业冷却水系统,因为该系统曾牵涉到疫情爆发,有必要对其进行军团菌监测,以进行风险管理。对工业用水系统中军团菌的监测广泛采用基于培养的测试方法,这种方法在周转时间和干扰方面存在局限性。包括 qPCR 在内的分子生物学方法因其更快的周转时间和更低的检测限,正在被探索用作基于培养的标准方法的补充或替代方法,从而可以更快速地采取水质修复措施,限制人类接触机会和公司责任。在这项研究中,对三种方法进行了比较:由经认证和认可的实验室进行的基于培养基的测试、基于实验室的高通量 qPCR 测试(HT qPCR)和可在现场使用的低通量 qPCR 测试(LT qPCR)。与培养检测相比,qPCR 检测方法可观察到更多的阳性结果,表明灵敏度和特异性都有所提高。LT qPCR 检测可进行便携式检测,周转时间短,可用于环境监测、流程优化、监测和现场病例调查。可现场部署的 LT qPCR 检验具有较高的阴性预测值,是对高风险环境和/或疫情调查中的军团菌样本进行阴性筛选的有用工具,可简化培养检验样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of a low-throughput qPCR-based Legionella assay for utility as an onsite industrial water system monitoring method.

Legionella is a bacterial genus found in natural aquatic environments, as well as domestic and industrial water systems. Legionella presents potential human health risks when aerosolized and inhaled by at-risk individuals and is commonly monitored at locations with likelihood of proliferation and human exposure. Legionella monitoring is widely performed using culture-based testing, which faces limitations including turnaround time and interferences. Molecular biology methodologies, including quantitative polymerase chain reaction (qPCR), are being explored to supplement or replace culture-based testing because of faster turnaround and lower detection limits, allowing for more rapid water remediation measures. In this study, three methods were compared by testing industrial water samples: culture-based testing by a certified lab, high throughput qPCR testing (HT qPCR), and field deployable low throughput qPCR testing (LT qPCR). The qPCR test methods reported more positive results than culture testing, indicating improved sensitivity and specificity. The LT qPCR test is portable with quick turnaround times, and can be leveraged for environmental surveillance, process optimization, monitoring, and onsite case investigations. The LT qPCR test had high negative predictive value and would be a useful tool for negative screening of Legionella samples from high-risk environments and/or outbreak investigations to streamline samples for culture testing.

One-sentence summary: This study compared three test methods for Legionella to evaluate performance of a low throughput quantitative polymerase chain reaction (LT qPCR) test for Legionella that can be used onsite; the study found that the high throughput (HT) and LT qPCR tests used in this study gave more positive results than culture testing, and the results indicated a similar negative predictive value for the HT and LT qPCR tests, supporting that the LT qPCR method could be useful for negative screening of Legionella samples in industrial water systems onsite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信