Journal of Histochemistry & Cytochemistry最新文献

筛选
英文 中文
Commentary on Classic Article. 经典文章评论。
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-04-01 Epub Date: 2023-04-04 DOI: 10.1369/00221554231166740
Constance Oliver
{"title":"Commentary on Classic Article.","authors":"Constance Oliver","doi":"10.1369/00221554231166740","DOIUrl":"10.1369/00221554231166740","url":null,"abstract":"","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Distribution of Foxp3 and CD68 in Preeclamptic and Healthy Placentas: A Histomorphological Evaluation. Foxp3 和 CD68 在先兆子痫和健康胎盘中的分布:组织形态学评估
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-04-01 Epub Date: 2023-04-18 DOI: 10.1369/00221554231170662
Yasemin Ersoy Canillioglu, Gozde Erkanli Senturk, Hakan Sahin, Sadik Sahin, Yasemin Seval-Celik
{"title":"The Distribution of Foxp3 and CD68 in Preeclamptic and Healthy Placentas: A Histomorphological Evaluation.","authors":"Yasemin Ersoy Canillioglu, Gozde Erkanli Senturk, Hakan Sahin, Sadik Sahin, Yasemin Seval-Celik","doi":"10.1369/00221554231170662","DOIUrl":"10.1369/00221554231170662","url":null,"abstract":"<p><p>Preeclampsia is a complication of pregnancy that affects 3-5% of pregnancies and is one of the major causes of maternal/neonatal mortality and morbidities worldwide. We aimed to investigate the distribution of Foxp3+ regulatory T-cells and CD68+ Hofbauer cells in the placenta of preeclamptic and healthy pregnant women with a special focus on correlating these findings with placental histology. Decidua and chorionic villi of the placenta obtained from healthy and preeclamptic pregnancies were evaluated in full-thickness sections. Sections were stained with hematoxylin and eosin and Masson's trichrome and immunostained for Foxp3 and CD68 for histological analyses. The total histomorphological score for placentas was found to be higher in preeclamptic placentas than that in the controls. The CD68 immunoreactivity was higher in the chorionic villi of preeclamptic placentas than that in the controls. The immunoreactivity of Foxp3 was found widely distributed within the decidua in both the groups and did not differ significantly. Interestingly, Foxp3 immunoreactivity in the chorionic villi was found mainly in the villous core and, to a lesser extent, in the syncytiotrophoblasts. We found no significant relation between Foxp3 expressions and morphological changes observed in preeclamptic placentas. Although extensive research is being carried out regarding the pathophysiology of preeclampsia, the findings are still controversial.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9651112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Distribution of SARS-CoV-2 Receptors and Proteases in Testicular Cells. SARS-CoV-2受体和蛋白酶在睾丸细胞中的空间分布
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-04-01 DOI: 10.1369/00221554231168916
Maria Rita Ribeiro, Ana Margarida Calado, Ângela Alves, Rute Pereira, Mário Sousa, Rosália Sá
{"title":"Spatial Distribution of SARS-CoV-2 Receptors and Proteases in Testicular Cells.","authors":"Maria Rita Ribeiro,&nbsp;Ana Margarida Calado,&nbsp;Ângela Alves,&nbsp;Rute Pereira,&nbsp;Mário Sousa,&nbsp;Rosália Sá","doi":"10.1369/00221554231168916","DOIUrl":"https://doi.org/10.1369/00221554231168916","url":null,"abstract":"<p><p>Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 RNA has been found in the human testis on occasion, but subgenomic SARS-CoV-2 and infectious SARS-CoV-2 virions have not been found. There is no direct evidence of SARS-CoV-2 infection of testicular cells. To better understand this, it is necessary to determine whether SARS-CoV-2 receptors and proteases are present in testicular cells. To overcome this limitation, we focused on elucidating with immunohistochemistry the spatial distribution of the SARS-CoV-2 receptors angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147), as well as their viral spike protein priming proteases, transmembrane protease serine 2 (TMPRSS2) and cathepsin L (CTSL), required for viral fusion with host cells. At the protein level, human testicular tissue expressed both receptors and proteases studied. Both ACE2 and TMPRSS2 were found in interstitial cells (endothelium, Leydig, and myoid peritubular cells) and in the seminiferous epithelium (Sertoli cells, spermatogonia, spermatocytes, and spermatids). The presence of CD147 was observed in all cell types except endothelium and peritubular cells, while CTSL was exclusively observed in Leydig, peritubular, and Sertoli cells. These findings show that the ACE2 receptor and its protease TMPRSS2 are coexpressed in all testicular cells, as well as the CD147 receptor and its protease CTSL in Leydig and Sertoli cells, indicating that testicular SARS-CoV-2 infection cannot be ruled out without further investigation.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/77/10.1369_00221554231168916.PMC10083717.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9650699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes. 甜菜碱治疗可通过恢复培养肌管的总蛋白合成率和形态来防止 TNF-α 介导的肌肉萎缩
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-04-01 Epub Date: 2023-04-03 DOI: 10.1369/00221554231165326
Andrea Di Credico, Giulia Gaggi, Pascal Izzicupo, Daniela Vitucci, Pasqualina Buono, Angela Di Baldassarre, Barbara Ghinassi
{"title":"Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes.","authors":"Andrea Di Credico, Giulia Gaggi, Pascal Izzicupo, Daniela Vitucci, Pasqualina Buono, Angela Di Baldassarre, Barbara Ghinassi","doi":"10.1369/00221554231165326","DOIUrl":"10.1369/00221554231165326","url":null,"abstract":"<p><p>Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10015293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of β-Catenin, E-Cadherin, and α-Smooth Muscle Actin in Basal Cell Carcinoma Before Photodynamic Therapy in Non-recurrent and Recurrent Tumors: Exploring the Ability of Predicting Photodynamic Therapy Outcome. 非复发性和复发性肿瘤光动力疗法前基底细胞癌中β-Catenin、E-Cadherin和α-平滑肌肌动蛋白的表达:探索光动力疗法结果的预测能力
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-03-01 Epub Date: 2023-03-24 DOI: 10.1369/00221554231161396
Erik Mørk, Patricia Mjønes, Olav A Foss, Ingeborg M Bachmann, Eidi Christensen
{"title":"Expression of β-Catenin, E-Cadherin, and α-Smooth Muscle Actin in Basal Cell Carcinoma Before Photodynamic Therapy in Non-recurrent and Recurrent Tumors: Exploring the Ability of Predicting Photodynamic Therapy Outcome.","authors":"Erik Mørk, Patricia Mjønes, Olav A Foss, Ingeborg M Bachmann, Eidi Christensen","doi":"10.1369/00221554231161396","DOIUrl":"10.1369/00221554231161396","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is an effective and cosmetically beneficial treatment of low-risk basal cell carcinomas (BCCs). To optimize PDT response, it is important to correctly select tumors. We sought to find markers that could identify such tumors beyond contributions from clinical and histological examination. Studies have shown that β-catenin, E-cadherin, and α-smooth muscle actin (SMA) expression can indicate BCC aggressiveness/BCC invasiveness. We wanted to use these markers in an explorative study to investigate whether they were differently expressed among non-recurring compared with recurring BCCs, to evaluate their ability of predicting PDT outcome. Fifty-two BCCs were stained with antibodies against β-catenin, E-cadherin, and α-SMA, and evaluated using immunoreactive score (IRS), subcellular localization, and stromal protein expression. Results showed that IRS of E-cadherin was significantly different among recurring compared with non-recurring BCCs and with area under a receiver operating characteristic curve of 0.71 (95% confidence interval: 0.56-0.86, <i>p</i>=0.025). Stromal β-catenin expression significantly increased among recurring BCCs. Some recurring BCCs had intense expression in the deep invading tumor edge. In conclusion, E-cadherin, and stromal and deep edge β-catenin expression were most prominent in BCCs that recurred post-PDT, suggesting they could potentially predict PDT outcome. Further studies are needed to investigate whether these results are of clinical value.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9663169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel-referenced Evaluation. 利用 DAPI 通道参照评估进行多重免疫荧光图像质量检查
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-03-01 Epub Date: 2023-03-24 DOI: 10.1369/00221554231161693
Jun Jiang, Raymond Moore, Clarissa E Jordan, Ruifeng Guo, Rachel L Maus, Hongfang Liu, Ellen Goode, Svetomir N Markovic, Chen Wang
{"title":"Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel-referenced Evaluation.","authors":"Jun Jiang, Raymond Moore, Clarissa E Jordan, Ruifeng Guo, Rachel L Maus, Hongfang Liu, Ellen Goode, Svetomir N Markovic, Chen Wang","doi":"10.1369/00221554231161693","DOIUrl":"10.1369/00221554231161693","url":null,"abstract":"<p><p>Multiplex immunofluorescence (MxIF) images provide detailed information of cell composition and spatial context for biomedical research. However, compromised data quality could lead to research biases. Comprehensive image quality checking (QC) is essential for reliable downstream analysis. As a reliable and specific staining of cell nuclei, 4',6-diamidino-2-phenylindole (DAPI) signals were used as references for tissue localization and auto-focusing across MxIF staining-scanning-bleaching iterations and could potentially be reused for QC. To confirm the feasibility of using DAPI as QC reference, pixel-level DAPI values were extracted to calculate signal fluctuations and tissue content similarities in staining-scanning-bleaching iterations for identifying quality issues. Concordance between automatic quantification and human experts' annotations were evaluated on a data set consisting of 348 fields of view (FOVs) with 45 immune and tumor cell markers. Cell distribution differences between subsets of QC-pass vs QC-failed FOVs were compared to investigate the downstream effects. Results showed that 87.3% FOVs with tissue damage and 73.4% of artifacts were identified. QC-failed FOVs showed elevated regional gathering in cellular feature space compared with the QC-pass FOVs. Our results supported that DAPI signals could be used as references for MxIF image QC, and low-quality FOVs identified by our method must be cautiously considered for downstream analyses.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9660061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of RANKL Expression in Osteocyte-like Differentiated Tumor Cells in Giant Cell Tumor of Bone After Denosumab Treatment. 地诺单抗治疗后抑制骨巨细胞瘤中骨细胞样分化肿瘤细胞的 RANKL 表达
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-03-01 Epub Date: 2023-03-27 DOI: 10.1369/00221554231163638
Takashi Noguchi, Akio Sakamoto, Yoshiki Murotani, Koichi Murata, Masahiro Hirata, Yosuke Yamada, Junya Toguchida, Shuichi Matsuda
{"title":"Inhibition of RANKL Expression in Osteocyte-like Differentiated Tumor Cells in Giant Cell Tumor of Bone After Denosumab Treatment.","authors":"Takashi Noguchi, Akio Sakamoto, Yoshiki Murotani, Koichi Murata, Masahiro Hirata, Yosuke Yamada, Junya Toguchida, Shuichi Matsuda","doi":"10.1369/00221554231163638","DOIUrl":"10.1369/00221554231163638","url":null,"abstract":"<p><p>Giant cell tumors of bone (GCTBs) are locally aggressive tumors with the histological features of giant cells and stromal cells. Denosumab is a human monoclonal antibody that binds to the cytokine receptor activator of nuclear factor-kappa B ligand (RANKL). RANKL inhibition blocks tumor-induced osteoclastogenesis, and survival, and is used to treat unresectable GCTBs. Denosumab treatment induces osteogenic differentiation of GCTB cells. In this study, the expression of RANKL, special AT-rich sequence-binding protein 2 (SATB2, a marker of osteoblast differentiation), and sclerostin/SOST (a marker of mature osteocytes) was analyzed before and after treatment with denosumab in six cases of GCTB. Denosumab therapy was administered a mean of five times over a mean 93.5-day period. Before denosumab treatment, RANKL expression was observed in one of six cases. After denosumab therapy, spindle-like cells devoid of giant cell aggregation were RANKL-positive in four of six cases. Bone matrix-embedded osteocyte markers were observed, although RANKL was not expressed. Osteocyte-like cells were confirmed to have mutations, as identified using mutation-specific antibodies. Our study results suggest that treatment of GCTBs with denosumab results in osteoblast-osteocyte differentiation. Denosumab played a role in the suppression of tumor activity via inhibition of the RANK-RANKL pathway, which triggers osteoclast precursors to differentiate into osteoclasts.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10032743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies. 硫黄素 S 染色和淀粉样蛋白形成是混合型 Tauopathies 的独特之处。
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-02-01 Epub Date: 2023-03-02 DOI: 10.1369/00221554231158428
Kimberly L Fiock, Ryan K Betters, Marco M Hefti
{"title":"Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies.","authors":"Kimberly L Fiock, Ryan K Betters, Marco M Hefti","doi":"10.1369/00221554231158428","DOIUrl":"10.1369/00221554231158428","url":null,"abstract":"<p><p>Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9287448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Guanidinium to Improve Biomolecule Quality in Fixed, Paraffin-embedded Tissue. 应用胍来提高固定石蜡包埋组织中生物大分子的质量。
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-02-01 Epub Date: 2023-03-04 DOI: 10.1369/00221554231159451
Joon-Yong Chung, Kyungeun Kim, Kris Ylaya, Katharine E Walker-Bawa, Candice Perry, Robert A Star, Stephen M Hewitt
{"title":"The Application of Guanidinium to Improve Biomolecule Quality in Fixed, Paraffin-embedded Tissue.","authors":"Joon-Yong Chung, Kyungeun Kim, Kris Ylaya, Katharine E Walker-Bawa, Candice Perry, Robert A Star, Stephen M Hewitt","doi":"10.1369/00221554231159451","DOIUrl":"10.1369/00221554231159451","url":null,"abstract":"<p><p>Neutral buffered formalin (NBF) is the most common fixative in clinical applications. However, NBF damages proteins and nucleic acids, limiting the quality of proteomic and nucleic acid-based assays. Prior studies have demonstrated that BE70, a fixative of buffered 70% ethanol, has many benefits over NBF but the degradation of proteins and nucleic acids in archival paraffin blocks remain a challenge. Thus, we evaluated the addition of guanidinium salts to BE70 with the hypothesis that this may protect RNA and protein. Guanidinium salt supplemented BE70 (BE70G)-fixed tissue is comparable with that of BE70 via histology and immunohistochemistry. Western blot analysis also revealed that HSP70, AKT, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression signals in BE70G-fixed tissue were higher than those in BE70-fixed tissue. The quality of nucleic acids extracted from BE70G-fixed, paraffin-embedded tissue was also superior, and BE70G provides improved protein and RNA quality at shorter fixation times than its predecessors. The degradation of proteins, AKT and GAPDH, in archival tissue blocks is also decreased with the addition of guanidinium salt to BE70. In conclusion, BE70G fixative improves the quality of molecular analysis with more rapid fixation of tissue and enhanced long-term storage of paraffin blocks at room temperature for evaluation of protein epitopes.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9293854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NKG2D Ligand Expression Induced by Oxidative Stress Mitigates Cutaneous Ischemia-Reperfusion Injury. 氧化应激诱导的 NKG2D 配体表达可减轻皮肤缺血再灌注损伤
IF 3.2 4区 生物学
Journal of Histochemistry & Cytochemistry Pub Date : 2023-02-01 Epub Date: 2023-02-10 DOI: 10.1369/00221554221147582
Keishi Makita, Noriyuki Otsuka, Utano Tomaru, Koji Taniguchi, Masanori Kasahara
{"title":"NKG2D Ligand Expression Induced by Oxidative Stress Mitigates Cutaneous Ischemia-Reperfusion Injury.","authors":"Keishi Makita, Noriyuki Otsuka, Utano Tomaru, Koji Taniguchi, Masanori Kasahara","doi":"10.1369/00221554221147582","DOIUrl":"10.1369/00221554221147582","url":null,"abstract":"<p><p>Pressure ulcers represent a crucial clinical problem, especially in hospitalized patients. Ischemia-reperfusion (I-R) is an important cause of these lesions. Natural killer (NK), invariant NK T (iNKT), and dendritic epidermal T-cells, which express the natural killer group 2, member D (NKG2D) receptor, have been reported to have physiological roles in skin tissue repair and wound healing. However, a role for NKG2D-NKG2D ligand interactions in I-R-induced skin injury has not been determined. Using a murine pressure ulcer model, we demonstrated that I-R-induced ulcers in NKG2D-deficient mice were larger than those in wild-type or T-cell receptor δ knockout mice. Histopathological evaluation revealed that accumulation of macrophages and neutrophils at the peripheral deep dermis and subcutaneous tissue of the ulcers was enhanced in NKG2D-deficient mice. <i>Rae-1</i> mRNA, which encodes an NKG2D ligand, was induced, and RAE-1 protein was detected immunohistochemically in fibroblasts and inflammatory cells in the dermis after reperfusion. RAE-1 expression was also increased in primary mouse fibroblasts treated with sodium arsenite. These results suggested that NKG2D ligand expression was induced by oxidative stress after I-R injury and support a putative role for this ligand in wound repair. Furthermore, the influx of NKG2D-positive cells at I-R sites may mitigate pressure ulcers via NKG2D-NKG2D ligand interactions.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信