{"title":"Confrontation experience against escaping bait improves pursuit strategy in mice.","authors":"Jincheng Wang, Yueting Zhang, Songyan Lv, Ruiqi Pang, Yanjie Zhang, Xue Liu, Qiyue Deng, Yi Zhou","doi":"10.1242/jeb.249244","DOIUrl":"10.1242/jeb.249244","url":null,"abstract":"<p><p>Confrontations between predator and prey, driven by the innate survival instincts in both predator and prey, constitute the most significant form of competition in evolution. Yet, understanding how survival skills can benefit from such confrontations remains limited, despite its critical importance for animal survival. We have developed an interactive platform to investigate confrontations between a hungry mouse and an escaping bait. This robotic bait is controlled magnetically through a closed-loop system to continually evade the approaching mouse. Meanwhile, the mouse must capture the escaping bait to receive a food reward. Through analysis of angles, speeds and other kinematic parameters of both the mouse and the bait, we observed that confrontation experiences can notably enhance mice performance. Compared with novice mice, veteran mice enhanced predation efficiency primarily by optimizing the pursuit phase, significantly reducing time costs, mainly by minimizing pauses in movement. Additionally, experience strengthened the navigation strategies used by mice to better track evading bait. Finally, we validated the impact of empirically induced changes in speed distribution and pursuit methods on predation efficiency through modeling of the pursuit phase. In conclusion, this study reveals that confrontation experience could improve pursuit strategy in mice by altering the speed control and pursuit method, providing new insights into these crucial behavioral interactions in nature.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea M Darby, Scott A Keith, Ananda A Kalukin, Brian P Lazzaro
{"title":"Chronic bacterial infections exert metabolic costs in Drosophila melanogaster.","authors":"Andrea M Darby, Scott A Keith, Ananda A Kalukin, Brian P Lazzaro","doi":"10.1242/jeb.249424","DOIUrl":"https://doi.org/10.1242/jeb.249424","url":null,"abstract":"<p><p>Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection. We infected D. melanogaster with four bacterial species (Providencia rettgeri, Serratia marcescens, Enterococcus faecalis and Lactococcus lactis) and assayed metabolic traits in chronically infected survivors. We found that D. melanogaster carrying chronic infections were uniformly more susceptible to starvation than uninfected controls, and that sensitivity to starvation escalated with higher chronic pathogen burden. We observed some evidence for greater depletion of triglyceride and glycogen stores in D. melanogaster carrying chronic bacterial loads, although this varied among bacterial species. Chronically infected flies exhibit sustained upregulation of the immune response, which we hypothesized might contribute to the metabolic costs. Consistent with this prediction, genetic activation of the major innate immune signaling pathways depleted metabolic stores and increased starvation sensitivity even in the absence of infection. These results demonstrate that even sublethal infections can have substantial health and fitness consequences for the hosts, arising in part from pathogen-induced immune activation, and that the consequences scale quantitatively with the severity of infection.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analía Mattiacci, Ana Laura Pietrantuono, Juan C Corley, Maité Masciocchi
{"title":"Chemotactile perception and associative learning of amino acids in yellowjacket workers.","authors":"Analía Mattiacci, Ana Laura Pietrantuono, Juan C Corley, Maité Masciocchi","doi":"10.1242/jeb.247211","DOIUrl":"10.1242/jeb.247211","url":null,"abstract":"<p><p>Learning and memory are fundamental processes, influencing animal foraging behaviour and fitness success. Evaluating food nutritional quality, particularly of proteins and essential amino acids, involves complex sensory mechanisms. While olfactory cues have been extensively studied, less is known about proteinaceous chemoreception, especially in invertebrates. Vespula germanica, a globally invasive social wasp species, relies heavily on foraging efficiency and nutritional assessment for colony success. Previous studies have highlighted their associative learning abilities in natural settings, but their cognitive capabilities under laboratory conditions still need to be explored. We investigated the perceptual and learning abilities of V. germanica concerning amino acids using a maxilla-labium extension response (MaLER) conditioning protocol. We aimed to determine whether these wasps can (1) perceive specific amino acids through antennal chemoreception, (2) perform associative learning with amino acids, (3) discriminate between stimuli of varying molecular and nutritional profiles, and (4) generalize among similar stimuli. Our results suggest that V. germanica can detect free amino acids and exhibit associative learning toward them. They can discriminate between amino acids with different profiles and do not generalize among similar compounds. These findings indicate that V. germanica foragers can qualitatively evaluate amino acid solutions, which translates into a natural ability to discern and learn from food sources with varying nutritional qualities. This knowledge could enhance management strategies for this invasive species, which rely on poisoned beef-based baits. Understanding the sensory and cognitive capabilities of V. germanica provides a foundation for developing more effective control methods.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of hypoxia on the olfactory sensitivity of gilt-head seabream (Sparus aurata).","authors":"Liam R Tigert, Peter C Hubbard, Cosima S Porteus","doi":"10.1242/jeb.249771","DOIUrl":"10.1242/jeb.249771","url":null,"abstract":"<p><p>Coastal environments around the world are becoming increasingly hypoxic owing to anthropogenic effects. We hypothesized that, because the olfactory epithelium is in contact with the external environment, decreased external oxygen will impair olfaction. We performed electro-olfactograms on juvenile gilt-head seabream (Sparus aurata) and measured the response to three amino acids at five different concentrations (1×10-7 to 1×10-3 mol l-1) in normoxic (20 kPa O2) and two hypoxic conditions (12.5 and 5.7 kPa O2). For the first time, we show that both mild and moderate hypoxia decreased the olfactory response to two out of three odorants. As more coastal areas become hypoxic, it is important to understand how hypoxia may impair the sensory systems of fishes, which can have individual- and population-level effects and important implications for our food supply.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavioural evidence of spectral opponent processing in the visual system of stomatopod crustaceans.","authors":"Ching-Wen Judy Wang, N Justin Marshall","doi":"10.1242/jeb.247952","DOIUrl":"10.1242/jeb.247952","url":null,"abstract":"<p><p>Stomatopods, commonly known as mantis shrimps, possess intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. Whereas 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopod colour vision. However, direct evidence of colour opponency has been lacking. We hypothesised that if colour opponency exists in stomatopod vision, they would be able to distinguish colour from grey under coloured illumination. Conversely, if only the binning system is used, they would not. By examining the colour vision of the stomatopod Haptosquilla trispinosa with modified von Frisch grey card experiments, we found that they can differentiate between colour and grey under various coloured illuminations. Our results provide the first direct behavioural evidence of spectral opponency in stomatopods, suggesting that they use a hybrid colour processing system combining opponent and binning mechanisms for colour vision. This study advances our understanding of the complex visual system in stomatopods and highlights the importance of further research into the processing mechanisms, function and evolution of their unique visual system.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse.","authors":"Danielle M Blumstein, Matthew D MacManes","doi":"10.1242/jeb.247978","DOIUrl":"10.1242/jeb.247978","url":null,"abstract":"<p><p>Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract and hypothalamus) and 17 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse (Peromyscus eremicus). We show impacts on immune function, circadian gene regulation and mitochondrial function for mice fed a lower-fat diet compared with mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. This study sheds light on the complex interplay between diet, physiological processes and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"227 24","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Taylor, D Charles Deeming, Gregory P Sutton
{"title":"Kinematics and energetics of the desert locust (Schistocerca gregaria) when jumping from compliant surfaces.","authors":"Jessica Taylor, D Charles Deeming, Gregory P Sutton","doi":"10.1242/jeb.248018","DOIUrl":"10.1242/jeb.248018","url":null,"abstract":"<p><p>Animals often leap from substrates that give way under them, such as leaves, soft ground or flexible branches. This provides an added complexity for latch-mediated spring-actuated (LaMSA) jumping animals because the spring-loaded system often works so quickly that neural feedback cannot adjust for errors caused by a yielding substrate. We studied a LaMSA jumper, the grasshopper, to determine how the mechanical properties of a substrate giving way under them would affect the kinematics of the jump. We measured this by allowing grasshoppers to leap from two diving boards, a long one that could generate a whole range of relative stiffnesses, and a shorter, much lighter, but stiffer board. Substrate stiffness was manipulated by then placing the grasshopper on different locations on that diving board, presenting from 30% of the grasshopper's leg stiffness to 200 times the grasshoppers leg stiffness. For platform stiffnesses that were less than that of the grasshopper, take-off velocity and kinetic energy were reduced, but jump elevation (the jump trajectory) was unaffected. For stiffnesses that were greater than that of the grasshopper, there was no effect on take-off velocity and kinetic energy. When jumping from an extremely light and stiff substrate, recoil of the surface allowed the grasshopper to recover some of the lost energy. Consequently, when jumping from substrates that are less stiff than they are (such as floppy leaves), grasshoppers must contend with lower take-off velocities, but jump direction is unaffected.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"227 24","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor H Gonzalez, Wesley Rancher, Rylee Vigil, Isabella Garino-Heisey, Kennan Oyen, Thomas Tscheulin, Theodora Petanidou, John M Hranitz, John F Barthell
{"title":"Bees remain heat tolerant after acute exposure to desiccation and starvation.","authors":"Victor H Gonzalez, Wesley Rancher, Rylee Vigil, Isabella Garino-Heisey, Kennan Oyen, Thomas Tscheulin, Theodora Petanidou, John M Hranitz, John F Barthell","doi":"10.1242/jeb.249216","DOIUrl":"10.1242/jeb.249216","url":null,"abstract":"<p><p>Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"227 24","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of a rapid avoidance behavior in Manduca sexta larvae in response to noxious stimuli.","authors":"Gayathri Kondakath, Barry A Trimmer","doi":"10.1242/jeb.248012","DOIUrl":"10.1242/jeb.248012","url":null,"abstract":"<p><p>This study focuses on the nociceptive responses observed in the tobacco hornworm (Manduca sexta). While prior investigations have described the sensory neurons and muscle activation patterns associated with the 'strike' behavior, there remains a gap in our understanding of the alternative 'withdrawal' movement, wherein the animal bends its head and thorax away from the stimulus. Our results show that stimulus location determines which nocifensive behavior is elicited. Interestingly, stimulation of specific mid-body segments could result in either withdrawal or strike, indicating a decision process rather than a hard-wired circuit. The withdrawal behavior was characterized using high-speed videography and electromyography. The results show that withdrawal in M. sexta is driven by contralateral ventral muscles, followed by an increase in ipsilateral muscle activation just before the bending stops. Dorsal muscles are co-activated throughout the movement. Although both withdrawal and strike behaviors involve sequential activation of lateral muscles, these behaviors involve different muscle groups. This discovery provides a novel model system to investigate the context dependence and decision-making processes triggered by stressful or noxious stimuli.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The glycoprotein hormone receptor (LGR1) influences Malpighian tubule secretion rate in Rhodnius prolixus.","authors":"Areej N Al-Dailami, Angela B Lange, Ian Orchard","doi":"10.1242/jeb.249357","DOIUrl":"10.1242/jeb.249357","url":null,"abstract":"<p><p>In the hemipteran Rhodnius prolixus, successful post-prandial diuresis is accomplished through the synergistic actions of the peptidergic diuretic hormone RhoprCRF/DH and the biogenic amine 5-hydroxytryptamine (5-HT), and by an antidiuretic hormone RhoprCAPA-2 that terminates diuresis by inhibiting this synergy. Lateral neurosecretory cells (NSCs) in the mesothoracic ganglionic mass release RhoprCRF/DH, while midline NSCs release RhoprCAPA-2 during blood feeding. These NSCs co-express GPA2/GPB5, a conserved glycoprotein hormone involved in various physiological processes across bilaterians. This study investigated the influence of GPA2/GPB5 signaling on Malpighian tubule (MT) fluid secretion in R. prolixus. GPB5-like immunoreactivity in lateral and midline NSCs decreased following a blood meal, suggesting release and a role in diuresis. Downregulating the GPA2/GPB5 receptor LGR1 via RNA interference resulted in an increased basal fluid secretion rate in MTs, which was inhibited by the antidiuretic hormone RhoprCAPA-2. dsLGR1 treatment reduced the effects of RhoprCRF/DH and 5-HT on MT secretion and eliminated their synergism. RT-qPCR revealed that the expression of the diuretic and antidiuretic hormone receptors decreased in MTs of dsLGR1-injected insects, indicating that GPA2/GPB5 influences the expression of these other receptors. Downregulating LGR1 resulted in a smaller blood meal size and disrupted the normal time course of diuresis. As LGR1 is the most abundantly expressed G protein-coupled receptor gene in R. prolixus MTs, our results suggest that GPA2/GPB5 signaling has a critical role in regulating the timing and success of water retention in the unfed state, and in the complex processes associated with feeding and diuresis in R. prolixus.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}