Michael Meece, Shubham Rathore, Diego Zagazeta, Elke K Buschbeck
{"title":"Assessing recovery of Drosophila melanogaster photoreceptors with different wavelengths of red and infrared light.","authors":"Michael Meece, Shubham Rathore, Diego Zagazeta, Elke K Buschbeck","doi":"10.1242/jeb.250043","DOIUrl":"10.1242/jeb.250043","url":null,"abstract":"<p><p>It has previously been shown that near-infrared light can positively affect the physiology of damaged tissue. This is likely mediated by the modulation of metabolic activity via cytochrome c oxidase (COX), the rate of ATP production and the generation of reactive oxygen species. It has been suggested that this process is influenced by the wavelength of near-infrared light, with different wavelengths having different efficacy. The impact of these effects on retinal health is not yet well understood. To answer this question, we first induced photoreceptor damage in the eyes of white mutant D. melanogaster through prolonged exposure to bright light. We then investigated the recovery of retinal health following exposure to different wavelengths of near-infrared light (670, 750, 810, 850 and 950 nm) over the course of 10 days. Retinal health was assessed through electroretinograms and fluorescence imaging of live photoreceptors. We found that all treatments except for 950 nm light facilitated the recovery of the electroretinogram response in previously light-damaged flies - though efficacy varied across treatments. All near-infrared light-exposed groups showed at least some improvement in retinal organization and auto-fluorescence compared with an untreated recovery control. We also showed that our results do not stem from a fly-specific artifact relating to opsin photoconversion. Finally, we made use of a bioassay to show enhanced ATP levels in light treatments. This study represents a much-needed direct comparison of the effect of light of a multitude of different wavelengths and contributes to an emerging body of literature that highlights the promise of phototherapy.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mia E Phillips, Hannah Marr, Stefan Schöneich, Tony Robillard, Hannah M Ter Hofstede
{"title":"Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini.","authors":"Mia E Phillips, Hannah Marr, Stefan Schöneich, Tony Robillard, Hannah M Ter Hofstede","doi":"10.1242/jeb.249877","DOIUrl":"10.1242/jeb.249877","url":null,"abstract":"<p><p>Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female. Here, we assessed two hypotheses regarding the behavioral origin of this multimodal duet in the Lebinthini. We conducted playback experiments and measured behavioral and neuronal responses in multiple related cricket species to assess whether the precursor to the lebinthine duet was (1) a startle response to high-frequency sound or (2) an elaboration of a pre-existing courtship behavior. We found behavioral similarities between the vibrational response of Lebinthini females and the acoustic startle behavior in other gryllid crickets. Specifically, the amplitude of the vibrational reply increases with male song amplitude in Lebinthini, and the magnitude of vibrations produced by two gryllid species when startled with ultrasound also correlates with the stimulus amplitude. Like in-flight startle behavior, the startle vibrations produced by perched crickets are suppressed when low-frequency sound is played simultaneously. We also observed courtship behavior in four gryllid species and found few instances of female vibration. Vibrational signals observed in Gryllus pennsylvanicus females were not correlated with male calls and occurred more frequently in pairs that did not mate after courtship. Combined, accumulating evidence supports the hypothesis that the lebinthine duet more likely evolved from a startle precursor than from courtship behavior.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Line Hermannsen, Michael Ladegaard, Pernille Tønnesen, Chloe Malinka, Kristian Beedholm, Jakob Tougaard, Laia Rojano-Doñate, Peter L Tyack, Peter T Madsen
{"title":"High-frequency vessel noise can mask porpoise echolocation.","authors":"Line Hermannsen, Michael Ladegaard, Pernille Tønnesen, Chloe Malinka, Kristian Beedholm, Jakob Tougaard, Laia Rojano-Doñate, Peter L Tyack, Peter T Madsen","doi":"10.1242/jeb.249963","DOIUrl":"10.1242/jeb.249963","url":null,"abstract":"<p><p>Ultrasonic cavitation noise from fast vessels overlaps spectrally with echolocation clicks of toothed whales and therefore has the potential to degrade echolocation performance through auditory masking of returning echoes. Here, we tested that hypothesis by exposing two trained echolocating porpoises carrying DTAGs to two different levels of decidecade noise centered on 2 kHz (non-masking) and 125 kHz (masking) during an active target discrimination task. We found no click level adjustments or effects on discrimination performance in trials with non-masking noise or low-level masking noise. However, when exposed to high-level masking noise of 113±3 dB re. 1 µPa root mean square (RMS), the porpoises increased their mean click source levels by 7-17 dB. Despite this Lombard response of 0.2-0.5 dBsignal/dBnoise, and longer time and more clicks used by the porpoises to perform the task in noise, both animals were still significantly poorer at discriminating the targets (64-85% success rate) than in the other treatments (94-100%), thus demonstrating adverse masking effects. When the porpoises were offered spatial release from masking by relocating the noise source off-axis relative to the animal-to-target axis, echolocation performance was regained. We conclude that moderate levels of high-frequency noise, such as from cavitating vessel propellers several hundred meters from a vessel, can mask porpoise echolocation in a way that cannot be fully compensated for. As biosonar is vital for foraging and navigation around hazards such as gillnets for porpoises and other toothed whales, this study highlights that masking effects should be considered in impact assessments of cavitating vessels around echolocating toothed whales.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 6","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The energetic cost of human walking as a function of uneven terrain amplitude.","authors":"Seyed-Saleh Hosseini-Yazdi, Arthur D Kuo","doi":"10.1242/jeb.249840","DOIUrl":"10.1242/jeb.249840","url":null,"abstract":"<p><p>Humans expend more energy walking on uneven terrain, but the amount varies across terrains. Few experimental characterizations exist, each describing terrain qualitatively without any relation to others or to flat ground. This precludes mechanistic explanation of the energy costs. Here, we show that energy costs vary smoothly and approximately quadratically as a function of terrain amplitude. We tested this with healthy adults (N=10) walking on synthetic uneven terrain with random step heights of parametrically controlled maximum amplitude (four conditions 0-0.045 m) and at four walking speeds (0.8-1.4 m s-1). Both net metabolic rate and the rate of positive work increased approximately with amplitude squared and speed cubed (R2=0.74, 0.82, respectively), as predicted by a simple walking model. The model requires work to redirect the body center of mass velocity between successive arcs described by pendulum-like legs, at proportional metabolic cost. Humans performed most of the greater work with terrain amplitude early in the single stance phase, and with speed later in stance during push-off. Work and energy rates changed with approximately linear proportionality, with a ratio or delta efficiency of 49.5% (R2=0.68). The efficiency was high enough to suggest substantial work performed passively by elastic tendon and not only by active muscle. Simple kinematic measures such as mid-swing foot clearance also increased with terrain amplitude (R2=0.65), possibly costing energy as well. Nevertheless, most of the metabolic cost of walking faster or on more uneven terrain can be explained mechanistically by the work performed.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lana J de Vries, Frank van Langevelde, Johan L van Leeuwen, Marc Naguib, Remco P M Pieters, Florian T Muijres
{"title":"Follow the flower: approach-flight behaviour of bumblebees landing on a moving target.","authors":"Lana J de Vries, Frank van Langevelde, Johan L van Leeuwen, Marc Naguib, Remco P M Pieters, Florian T Muijres","doi":"10.1242/jeb.249380","DOIUrl":"10.1242/jeb.249380","url":null,"abstract":"<p><p>While landing on flowers, pollinating insects often have to deal with flower movement caused by wind. Here, we determined the landing performance of bumblebees on a moving artificial flower and how bees use their visual-motor system to control their landings. To do this, we built an experimental setup containing a physical model of a flower, moving sideways using sinusoidal kinematics at various oscillation frequencies (up to 0.65 Hz, at constant amplitude of 5 cm). We filmed the landings of Bombus terrestris bumblebees on this moving flower model and extracted the flight kinematics and trajectories using deep neural network-based videography tracking. The bumblebees were capable of compensating for the detrimental effects of flower movement on landing performance for flower movement frequencies up to 0.53 Hz. Only at our maximum frequency of 0.65 Hz did the percentage of successful landings decrease but landing accuracy and duration were not affected. To successfully land on the moving flower, the bumblebees gradually slowed down, aimed towards the middle of the flower and aligned with its movement. Our results indicated that bumblebees use modular visual-motor control feedback to do this: (1) they slow down by maintaining an approximately constant average optic expansion of the approaching flower image; (2) they aim towards the flower by keeping the flower in the middle of their view; (3) they align to the flower movement by minimizing the sideways optic flow of the moving flower image. Our findings increase our understanding of how flying insects land on flowers moved by wind.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ready to dive? Early constraints help juvenile southern elephant seals (Mirounga leonina) acclimatize to aquatic life.","authors":"Laura Charlanne, Fabrice Bertile, Alexandre Geffroy, Lea Hippauf, Isabelle Chery, Sandrine Zahn, Christophe Guinet, Erwan Piot, Jérome Badaut, André Ancel, Caroline Gilbert, Audrey Bergouignan","doi":"10.1242/jeb.249813","DOIUrl":"10.1242/jeb.249813","url":null,"abstract":"<p><p>Breath-holding foraging implies different adaptations to limit oxygen (O2) depletion and maximize foraging time. Physiological adjustments can be mediated through O2 consumption, driven by muscle mitochondria, which can also produce reactive oxygen species during reoxygenation. Southern elephant seals spend months foraging at sea, diving for up to 1 h. Pups transition abruptly to aquatic life after a post-weaning period, during which they fast and progressively increase their activity, making this period critical for the development of an adaptive response to oxygen restriction and oxidative stress. We compared the functional capacity of a swimming muscle in 5 recently weaned and 6 adult female southern elephant seals. High-resolution respirometry was employed to examine muscle mitochondrial respiratory capacity and differences in protein and gene expression of the main regulatory pathways were determined using LC-MS/MS and RT-qPCR, respectively. Oxidative damage was measured in the plasma. We found that juveniles have higher mitochondrial coupling efficiency compared with adults, probably as a response to growth and significant physical activity reported during the post-weaning period. There were no differences in oxidative damage, but adults had a higher level of antioxidant defenses. Both hypoxia and oxidative response pathways appeared less activated in juveniles. This study highlights the differences in muscle metabolism and the likely adaptive response to hypoxia and oxidative stress between juvenile and adult south elephant seals. It also suggests that early constraints such as fasting, physical activity and short-term low O2 partial pressure exposure could contribute to immediate and long-term responses and help to acclimatize juveniles to aquatic life.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using the reactive scope model to redefine the concept of social stress in fishes.","authors":"Kathleen M Gilmour, Carol Best, Suzanne Currie","doi":"10.1242/jeb.249395","DOIUrl":"10.1242/jeb.249395","url":null,"abstract":"<p><p>The term 'social stress' has traditionally referred to physiological stress responses induced by the behaviour of conspecifics, particularly aggression or agonistic behaviours. Here, we review the physiological consequences of social status in fishes using the reactive scope model (RSM) to explain the divergent physiological phenotypes of dominant and subordinate fish. The RSM plots levels of different physiological mediators (e.g. behaviour, glucocorticoid hormones) over time, using them to define functional ranges that differ in their consequences for the animal. We discuss differences in growth, reproduction and tolerance of environmental challenges, all of which are suppressed in subordinate individuals, and focus on the underlying mechanisms that give rise to these phenotypes. Repeated and/or continual activation of the hypothalamic-pituitary-interrenal (HPI) axis in subordinate fish can lead to prolonged elevation of cortisol, a key physiological mediator. In turn, this increases physiological 'wear and tear' in these individuals, lowering their reactive scope (i.e. the physiological range of a healthy animal) and increasing their susceptibility to homeostatic overload. That is, they experience social stress and, ultimately, their capacity to cope with environmental challenges is limited. By contrast, reactive scope is maintained in dominant individuals, and hence they are better able to tolerate environmental challenges. Redefining social stress in terms of the RSM allows us to overcome the ambiguities and limitations associated with the concept of stress.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 6","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coty W Jasper, Olivia Molano, Forrest Fearington, Joseph A Sisneros, Allison B Coffin
{"title":"Reproductive state-dependent cell turnover in the inner ear of the plainfin midshipman fish (Porichthys notatus).","authors":"Coty W Jasper, Olivia Molano, Forrest Fearington, Joseph A Sisneros, Allison B Coffin","doi":"10.1242/jeb.250239","DOIUrl":"10.1242/jeb.250239","url":null,"abstract":"<p><p>Plainfin midshipman fish (Porichthys notatus) exhibit seasonal auditory plasticity that enhances their reproductive success. During the summer, type I male midshipman acoustically court females and both the males and females exhibit increased auditory sensitivity during this period. The enhanced auditory sensitivity is associated with increased density of sensory hair cells in the saccule but not the utricle, suggesting that different mechanisms underlie physiological plasticity in distinct inner ear regions. To better understand how shifts in hair cell number occur within auditory tissues, we examined cell turnover across breeding states and sexes in midshipman fish. We found that reproductive type I males exhibited less saccular cell proliferation than non-reproductive males without a change in cell death, indicating a net loss of saccular cells during the breeding season. By contrast, saccular cell proliferation increased in summer females, with no seasonal changes in other inner ear epithelia. Collectively, our data reveal that multiple mechanisms are likely to contribute to seasonal auditory plasticity within a single species, potentially within the ear of an individual animal.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beak dimensions affect feeding performance within a granivorous songbird species.","authors":"T Andries, W Müller, S Van Wassenbergh","doi":"10.1242/jeb.249681","DOIUrl":"10.1242/jeb.249681","url":null,"abstract":"<p><p>Beaks of granivorous songbirds are adapted to dehusk seeds fast and efficiently. This is reflected in the large variety of beak shapes and sizes among species specialized in different seed types. Generally, larger beaks improve the dehusking of larger seeds by transmitting and withstanding higher bite forces. Meanwhile, smaller beaks are better suited for processing smaller seeds by allowing faster beak movements and better seed handling dexterity. These patterns are presumably the result of a trade-off between force and velocity inherent to lever systems. Because beak shape also varies among individuals of the same species, we investigated whether beak shape relates to variation in feeding performance and beak kinematics in the domestic canary (Serinus canaria). We analysed beak morphology of 87 individuals through both traditional size measurements and 3D-landmark analysis to capture metrics such as beak depth, length, width and curvature. We related these metrics of morphology to data on feeding performance and beak kinematics during feeding on smaller canary seeds and larger, tougher hemp seeds. We found that individuals with larger absolute beak depths were faster at dehusking the large seeds. Even though individuals with shallow or long beaks displayed higher beak opening-closing frequencies, this did not result in a significantly shorter processing time of the smaller seeds. Our data are therefore in line with the presence of a force-velocity trade-off within a species, but without a velocity-related drawback of beak-size adaptations for increased bite force on the handling performance of a smaller and easier-to-crack seed.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bethany L Williams, Lauren M Pintor, Suzanne M Gray
{"title":"Alteration of reproductive behaviors by aromatase inhibition is population dependent in an African cichlid fish.","authors":"Bethany L Williams, Lauren M Pintor, Suzanne M Gray","doi":"10.1242/jeb.249497","DOIUrl":"10.1242/jeb.249497","url":null,"abstract":"<p><p>Although hormones are vital to an organism's ability to respond to environmental stressors, they can be directly altered by the environment and impact reproductive behavior. For example, in some fishes, aquatic hypoxia (low dissolved oxygen) inhibits the aromatase enzyme that converts testosterone to estradiol. Here, we examined the effects of short-term aromatase inhibition on reproductive behavior in male Pseudocrenilabrus multicolor, a widespread African cichlid, from one normoxic river population and one hypoxic swamp population. We further tested the response of females to treated and untreated males. We predicted that aromatase inhibition would decrease courtship and competitive behaviors, but the swamp population would be less affected given generational exposure to hypoxia. Specifically, we compared competition and courtship behavior of males treated with a short-term exposure to an aromatase inhibitor with control fish from the two populations. We found that both courtship and competitive behaviors were affected by the interaction between treatment and population. River fish performed fewer courtship and competitive behaviors under the aromatase inhibition treatment while the behavior of swamp males was unaffected. Additionally, we found that females from the swamp population preferred males from the aromatase inhibition treatment and river females preferred control males. While we found behavioral effects of short-term aromatase inhibition, we did not find any effects on male nuptial coloration. Overall, these results indicate that the effects of short-term aromatase inhibition on behavior could depend on local adaptation in response to hypoxia.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}