Lucas Baumgart, Sascha Schlüter, Marieke Moog, Annika Schönfeld, Adrian Heß, Florian Menzel, Anna-Christin Joel
{"title":"The sticky truth: how spider predation success depends on their prey's body surface.","authors":"Lucas Baumgart, Sascha Schlüter, Marieke Moog, Annika Schönfeld, Adrian Heß, Florian Menzel, Anna-Christin Joel","doi":"10.1242/jeb.249347","DOIUrl":null,"url":null,"abstract":"<p><p>Spiders are prominent predators for insects, with which they have a close co-evolutionary history. Manifold capture techniques have evolved, with spider webs being one of most well-known traps in the world. Many webs include specialised threads, bearing either glue or cribellate nanofibres as adhesive to capture prey. Some webs, such as the sheet webs of Tarantulae, have no such intricate threads. The adhesion of gluey threads has been extensively studied already, but often on artificial surfaces. However, recent studies discovered that adhesion of cribellate nanofibres increases massively after contact with insect cuticular hydrocarbons (CHCs). This raises the question whether insect CHCs generally influence prey capture. We compared the adhesion of cribellate, ecribellate gluey and ecribellate non-specialised threads to either uncoated or CHC-coated foil, or native prey body surfaces. We found an influence of CHCs on all silken threads, but with different outcomes. CHC presence, its composition as well as the surface structure can impact the final adhesion force positively or negatively, depending on the thread type. In extreme cases, the adhesion was reduced to nearly zero (e.g. for gluey capture threads in contact with real prey). Thus, prey influence on adhesion is not limited to cribellate capture threads, but is a universal influence on adhesion of spider silken capture threads. Future studies should consider both insect surface chemistry and surface structure when assessing the effectiveness of capture thread types in an ecological and evolutionary context.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249347","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spiders are prominent predators for insects, with which they have a close co-evolutionary history. Manifold capture techniques have evolved, with spider webs being one of most well-known traps in the world. Many webs include specialised threads, bearing either glue or cribellate nanofibres as adhesive to capture prey. Some webs, such as the sheet webs of Tarantulae, have no such intricate threads. The adhesion of gluey threads has been extensively studied already, but often on artificial surfaces. However, recent studies discovered that adhesion of cribellate nanofibres increases massively after contact with insect cuticular hydrocarbons (CHCs). This raises the question whether insect CHCs generally influence prey capture. We compared the adhesion of cribellate, ecribellate gluey and ecribellate non-specialised threads to either uncoated or CHC-coated foil, or native prey body surfaces. We found an influence of CHCs on all silken threads, but with different outcomes. CHC presence, its composition as well as the surface structure can impact the final adhesion force positively or negatively, depending on the thread type. In extreme cases, the adhesion was reduced to nearly zero (e.g. for gluey capture threads in contact with real prey). Thus, prey influence on adhesion is not limited to cribellate capture threads, but is a universal influence on adhesion of spider silken capture threads. Future studies should consider both insect surface chemistry and surface structure when assessing the effectiveness of capture thread types in an ecological and evolutionary context.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.