{"title":"Announcing the 2024 Journal of Experimental Biology Outstanding Paper Prize shortlist and winner.","authors":"Kathryn Knight","doi":"10.1242/jeb.250344","DOIUrl":"https://doi.org/10.1242/jeb.250344","url":null,"abstract":"","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tessa S Blanchard, Madison L Earhart, Nicholas Strowbridge, Patricia M Schulte
{"title":"Exposure to sub-optimal temperature during early development decreases hypoxia tolerance in juvenile Fundulus heteroclitus.","authors":"Tessa S Blanchard, Madison L Earhart, Nicholas Strowbridge, Patricia M Schulte","doi":"10.1242/jeb.249308","DOIUrl":"10.1242/jeb.249308","url":null,"abstract":"<p><p>Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored. In this study, we examined whether altered temperature during embryonic development results in developmental plasticity in upper thermal tolerance or hypoxia tolerance using a small topminnow, Fundulus heteroclitus, and examined potential underlying molecular mechanisms. We incubated embryos at one of two ecologically relevant temperatures (20°C or 26°C) until hatch. Once hatched, fish were raised at a common temperature of 20°C for 1 year, and tolerance was assessed in both juveniles (6 months) and early adults (1 year). Developmental temperature had no significant effect on thermal tolerance (CTmax) in juvenile fish, or on the transcript abundance of thermal tolerance-related genes (constitutive heat shock proteins, hsc70, hsp90b). In contrast, reduced developmental temperature decreased hypoxia tolerance but increased transcript levels of the hypoxia inducible factor hif1α in juvenile fish but the effects were less evident in older fish. Overall, we found no indication of developmental plasticity for thermal tolerance, but there was evidence of negative impacts of lower developmental temperature on hypoxia tolerance in juveniles associated with changes in gene expression, providing evidence of developmental plasticity across stressors and levels of organization.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating biomechanics, energetics and ecology perspectives in locomotion.","authors":"Andrew A Biewener, Alan M Wilson","doi":"10.1242/jeb.249585","DOIUrl":"https://doi.org/10.1242/jeb.249585","url":null,"abstract":"<p><p>Scientific fields evolve a culture and vocabulary that create a group identity but may result in reduced understanding by people in apparently adjacent but different fields. Here, a series of articles written by scientists active in biomechanics, energetics and ecology relevant to locomotion forms the basis of researchers striving to bridge those divides and providing a common language and perspective.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glen A Lichtwark, Luke N Jessup, Ryan N Konno, Cristian D Riveros-Matthey, Taylor J M Dick
{"title":"Integrating muscle energetics into biomechanical models to understand variance in the cost of movement.","authors":"Glen A Lichtwark, Luke N Jessup, Ryan N Konno, Cristian D Riveros-Matthey, Taylor J M Dick","doi":"10.1242/jeb.248022","DOIUrl":"https://doi.org/10.1242/jeb.248022","url":null,"abstract":"<p><p>In this Review, we explore the state of the art of biomechanical models for estimating energy consumption during terrestrial locomotion. We consider different mechanical models that provide a solid framework to understand movement energetics from the perspective of force and work requirements. Whilst such models are highly informative, they lack specificity for predicting absolute metabolic rates across a range of species or variations in movement patterns. Muscles consume energy when they activate to generate tension, as well as when they shorten to generate positive work. Phenomenological muscle models incorporating steady-state parameters have been developed and are able to reproduce how muscle fibre energy consumption changes under different contractile conditions; however, such models are difficult to validate when scaled up to whole muscle. This is, in part, owing to limited availability of data that relate muscle dynamics to energetic rates during contraction of large mammalian muscles. Furthermore, factors including the compliance of tendinous tissue, dynamic shape changes and motor unit recruitment can alter the dynamics of muscle contractile tissue and potentially improve muscle efficiency under some locomotion conditions. Despite the many challenges, energetic cost estimates derived from musculoskeletal models that simulate muscle function required to generate movement have been shown to reasonably predict changes in human metabolic rates under different movement conditions. However, accurate predictions of absolute metabolic rate are still elusive. We suggest that conceptual models may be adapted based on our understanding of muscle energetics to better predict the variance in movement energetics both within and between terrestrial species.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Douglas L Altshuler, Vikram B Baliga, Anthony B Lapsansky, Phillip Lee, Eric R Press, Jolan S Theriault
{"title":"Understanding mechanisms of avian flight by integrating observations with tests of competing hypotheses.","authors":"Douglas L Altshuler, Vikram B Baliga, Anthony B Lapsansky, Phillip Lee, Eric R Press, Jolan S Theriault","doi":"10.1242/jeb.247992","DOIUrl":"https://doi.org/10.1242/jeb.247992","url":null,"abstract":"<p><p>A long-standing problem in the study of avian flight is determining how biomechanics and physiology are associated with behaviour, ecological interactions and evolution. In some avian clades, flight mechanisms are strongly linked to ecology. Hummingbirds, for example, exhibit traits that support both hovering flight and nectar foraging. In most avian clades, however, features such as wing shape are highly variable among taxa without clear relationships to biomechanics, energetics or ecology. In this Commentary, we discuss challenges to understanding associations between phenotype and performance in avian flight. A potential pitfall in studies that attempt to link trait specialization with performance is that the most relevant traits and environments are not being considered. Additionally, a large number of studies of the mechanisms of avian flight are highly phenomenological. Although observations are essential for hypothesis development, we argue that for our discipline to make progress, we will need much more integration of the observational phase with developing crucial tests of competing hypotheses. Direct comparison of alternative hypotheses can be accomplished through analytical frameworks as well as through experimentation.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How do feeding biomechanics, extreme predator-prey size ratios and the rare enemy effect determine energetics and ecology at the largest scale?","authors":"Jeremy A Goldbogen, David E Cade","doi":"10.1242/jeb.247875","DOIUrl":"https://doi.org/10.1242/jeb.247875","url":null,"abstract":"<p><p>The most recent and largest radiation of marine filter feeders are edentulous baleen whales (Mysticeti) that use keratinized racks of fringed and matted baleen to filter zooplankton (e.g. krill) or small schooling fish (e.g. anchovies, sardines). Rorqual whales (Balaeopteridae) exhibit the greatest size range among mysticetes and employ a unique lunge-feeding mechanism whereby engulfment and filtration are temporally decoupled. As a result, lunge feeding confers the ability to rapidly engulf large prey aggregations, such as krill or schooling fish, followed by a prolonged filter phase. In contrast, engulfment and filtration occur at the same time in all other gigantic filter feeders (e.g. basking sharks, whale sharks) at slow speeds. Although lunges in rorquals occur at higher speeds, the extreme predator-prey ratios at play suggest that whales may not be able to overcome the escape abilities of scattering prey. These types of prey have been engaged in evolutionary arms races with smaller predators for tens of millions of years prior to the rise of today's ocean giants. Extant rorqual whales evolved gigantism only in the last few million years; thus, they represent rare enemies of small prey such that flight responses may be delayed until escape is less likely. Data from whale-borne movement-sensing tags, looming stimulus experiments and stomach contents suggest a potential trade-off in capture efficiency for different prey types (e.g. fish versus krill) with increasing whale body size. Such constraints likely shaped the ecology and energetics of foraging at the largest scales.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roxanne S Beltran, A Marm Kilpatrick, Stephanie K Adamczak, Larissa T Beumer, Max F Czapanskiy, Sarah C Davidson, Bryan S McLean, Thomas Mueller, Allison R Payne, Carmen D Soria, Brian C Weeks, Terrie M Williams, Roberto Salguero-Gómez
{"title":"Integrating animal tracking and trait data to facilitate global ecological discoveries.","authors":"Roxanne S Beltran, A Marm Kilpatrick, Stephanie K Adamczak, Larissa T Beumer, Max F Czapanskiy, Sarah C Davidson, Bryan S McLean, Thomas Mueller, Allison R Payne, Carmen D Soria, Brian C Weeks, Terrie M Williams, Roberto Salguero-Gómez","doi":"10.1242/jeb.247981","DOIUrl":"10.1242/jeb.247981","url":null,"abstract":"<p><p>Understanding animal movement is at the core of ecology, evolution and conservation science. Big data approaches for animal tracking have facilitated impactful synthesis research on spatial biology and behavior in ecologically important and human-impacted regions. Similarly, databases of animal traits (e.g. body size, limb length, locomotion method, lifespan) have been used for a wide range of comparative questions, with emerging data being shared at the level of individuals and populations. Here, we argue that the proliferation of both types of publicly available data creates exciting opportunities to unlock new avenues of research, such as spatial planning and ecological forecasting. We assessed the feasibility of combining animal tracking and trait databases to develop and test hypotheses across geographic, temporal and biological allometric scales. We identified multiple research questions addressing performance and distribution constraints that could be answered by integrating trait and tracking data. For example, how do physiological (e.g. metabolic rates) and biomechanical traits (e.g. limb length, locomotion form) influence migration distances? We illustrate the potential of our framework with three case studies that effectively integrate trait and tracking data for comparative research. An important challenge ahead is the lack of taxonomic and spatial overlap in trait and tracking databases. We identify critical next steps for future integration of tracking and trait databases, with the most impactful being open and interlinked individual-level data. Coordinated efforts to combine trait and tracking databases will accelerate global ecological and evolutionary insights and inform conservation and management decisions in our changing world.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards the yin and yang of fish locomotion: linking energetics, ecology and mechanics through field and lab approaches.","authors":"James C Liao","doi":"10.1242/jeb.248011","DOIUrl":"10.1242/jeb.248011","url":null,"abstract":"<p><p>Most of our understanding of fish locomotion has focused on elementary behaviors such as steady swimming and escape responses in simple environments. As the field matures, increasing attention is being paid to transient and unsteady behaviors that characterize more complex interactions with the environment. This Commentary advocates for an ecologically relevant approach to lab studies. Specific examples have brought new understanding to the energetic consequences of fish swimming, such as (1) station holding around bluff bodies, which departs drastically from steady swimming in almost all aspects of kinematics, muscle activity and energetics, and (2) transient behaviors such as acceleration and feeding, which are critical to survival but often neglected because of challenges in measuring costs. Beyond the lab, a far richer diversity of behaviors is available when fish are given enough space and time to move. Mesocosm studies are poised to reveal new insights into fish swimming that are inaccessible in laboratory settings. Next-generation biologgers that incorporate neural recordings will usher in a new era for understanding biomechanics in the wild and open the door for a more mechanistic understanding of how changing environments affect animal movement. These advances promise to allow insights into animal locomotion in ways that will mutually complement and accelerate laboratory and field studies in the years to come.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An annual cycle perspective on energetics and locomotion of migratory animals.","authors":"Judy Shamoun-Baranes, Kees C J Camphuysen","doi":"10.1242/jeb.248053","DOIUrl":"https://doi.org/10.1242/jeb.248053","url":null,"abstract":"<p><p>Animal migrations, or long-distance movements, on land, through water or in the air, are considered energetically costly because of the investment in persistent locomotion typical for migration. Diverse strategies exist to manage these energetic costs. Yet migration is only one stage in an annual cycle and may not be the most energetically costly. To better understand how free-ranging animals adaptively organize energy expenditure and locomotion, an annual cycle perspective is needed. Bio-logging data are collected for a range of animal species and could facilitate a life cycle approach to study energy expenditure. We provide examples from several studies across different taxa, as well as a more in-depth exploration from our own recent research on time activity budgets based on field observations and bio-logging data to estimate daily energy expenditure in a migratory seabird throughout a year. Our research has shown that daily energy expenditure is highest (1.7× average daily energy expenditure) during the spring migration of long-distance migratory gulls, whereas short-distance migrants expend the most energy (1.4× average daily energy expenditure) during the breeding season. Based on the examples provided, we show how bio-energetic models create exciting opportunities to study daily energetics and behaviour of migratory animals, although limitations also still exist. Such studies can reveal when, where and why peaks and lulls in energy expenditure arise over the annual cycle of a migrant, if long-distance movements are indeed energetically expensive and how animals can adapt to fluctuating demands in their natural environment throughout the year.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tijana Canic, Juan Lopez, Natalie Ortiz-Vega, R Grace Zhai, Sheyum Syed
{"title":"High-resolution, high-throughput analysis of Drosophila geotactic behavior.","authors":"Tijana Canic, Juan Lopez, Natalie Ortiz-Vega, R Grace Zhai, Sheyum Syed","doi":"10.1242/jeb.248029","DOIUrl":"10.1242/jeb.248029","url":null,"abstract":"<p><p>Drosophila's innate response to gravity, geotaxis, has been used to assess the impact of aging and disease on motor performance. Despite its rich history, fly geotaxis continues to be largely measured manually and assessed through simplistic metrics, limiting analytic insights into the behavior. Here, we have constructed a fully programmable apparatus and developed a multi-object tracking software capable of following sub-second movements of individual flies, thus allowing quantitative analysis of geotaxis. The apparatus monitors 10 fly cohorts simultaneously, with each cohort consisting of up to 7 flies. The software tracks single flies during the entire run with ∼97% accuracy, yielding detailed climbing curve, speed and movement direction with 1/30 s resolution. Our tracking permits the construction of multi-variable metrics and the detection of transitory movement phenotypes, such as slips and falls. The platform is therefore poised to advance Drosophila geotaxis assay into a comprehensive assessment of locomotor behavior.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}