CRISPR/Cas9-mediated myostatin disruption elevates the expression of genes associated with myofiber composition and growth in Exopalaemon carinicauda.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-05-15 Epub Date: 2025-05-23 DOI:10.1242/jeb.250148
Yuke Bu, Rongxiao Wang, Yujie Liu, Kefan Xing, Xue Zhang, Yuying Sun, Jiquan Zhang
{"title":"CRISPR/Cas9-mediated myostatin disruption elevates the expression of genes associated with myofiber composition and growth in Exopalaemon carinicauda.","authors":"Yuke Bu, Rongxiao Wang, Yujie Liu, Kefan Xing, Xue Zhang, Yuying Sun, Jiquan Zhang","doi":"10.1242/jeb.250148","DOIUrl":null,"url":null,"abstract":"<p><p>Myostatin (MSTN) is a negative regulator of skeletal muscle development and growth in vertebrates, but its role in crustaceans remains debated. To explore the functional role of MSTN in Exopalaemon carinicauda (EcMSTN) and to facilitate the development of new strains with enhanced growth rates, we investigated the molecular characteristics, expression patterns and functional implications of EcMSTN. We employed CRISPR/Cas9-mediated gene editing technology to generate EcMSTN knockout (EcMSTN-KO) prawns and subsequently monitored their hatching rate, survival rate and growth performance. The findings revealed that the hatching rate in the EcMSTN-KO group was only 11%, significantly lower than the 50% in the control group (P<0.05). In comparison to their wild-type (WT) siblings (1.212±0.114 cm), the EcMSTN-KO prawns (1.481±0.192) demonstrated a markedly enhanced body length (P<0.001). The expression of genes associated with myofiber composition and growth, including myosin heavy chain 2 (EcMHC2) and myosin light chain 1 (EcMLC1), exhibited a highly significant increase (P<0.001) in EcMSTN-KO prawns. Additionally, the expression of ecdysone receptor (EcEcR), a molt-related gene, was significantly elevated (P<0.001), while the expression of retinoid X receptor (EcRXR) showed no significant difference (P>0.05). The above studies indicate that EcMSTN functions as a negative regulator of muscle growth in E. carinicauda. Moreover, EcMSTN may play a role in molting. These results underscore the significant potential of MSTN as a genetic target for improving crustacean aquaculture, particularly through gene editing technologies aimed at enhancing growth traits.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myostatin (MSTN) is a negative regulator of skeletal muscle development and growth in vertebrates, but its role in crustaceans remains debated. To explore the functional role of MSTN in Exopalaemon carinicauda (EcMSTN) and to facilitate the development of new strains with enhanced growth rates, we investigated the molecular characteristics, expression patterns and functional implications of EcMSTN. We employed CRISPR/Cas9-mediated gene editing technology to generate EcMSTN knockout (EcMSTN-KO) prawns and subsequently monitored their hatching rate, survival rate and growth performance. The findings revealed that the hatching rate in the EcMSTN-KO group was only 11%, significantly lower than the 50% in the control group (P<0.05). In comparison to their wild-type (WT) siblings (1.212±0.114 cm), the EcMSTN-KO prawns (1.481±0.192) demonstrated a markedly enhanced body length (P<0.001). The expression of genes associated with myofiber composition and growth, including myosin heavy chain 2 (EcMHC2) and myosin light chain 1 (EcMLC1), exhibited a highly significant increase (P<0.001) in EcMSTN-KO prawns. Additionally, the expression of ecdysone receptor (EcEcR), a molt-related gene, was significantly elevated (P<0.001), while the expression of retinoid X receptor (EcRXR) showed no significant difference (P>0.05). The above studies indicate that EcMSTN functions as a negative regulator of muscle growth in E. carinicauda. Moreover, EcMSTN may play a role in molting. These results underscore the significant potential of MSTN as a genetic target for improving crustacean aquaculture, particularly through gene editing technologies aimed at enhancing growth traits.

CRISPR/ cas9介导的肌生长抑制素破坏可提高外腭肌纤维组成和生长相关基因的表达。
肌生长抑制素(MSTN)是脊椎动物骨骼肌发育和生长的负调节因子,但其在甲壳类动物中的作用仍存在争议。为了探索MSTN(命名为EcMSTN)在外皮emon carinicauda中的功能作用,并促进新菌株的生长,我们研究了EcMSTN的分子特征、表达模式及其功能意义。我们采用CRISPR/ cas9介导的基因编辑技术产生EcMSTN敲除对虾(EcMSTN- ko),随后监测其孵化率、存活率和生长性能。结果显示,注射组的孵化率仅为11%,显著低于对照组的50% (p0.05)。上述研究表明,EcMSTN对棘毛蟹的肌肉生长起负调控作用。此外,EcMSTN可能在脱毛中发挥潜在作用。这些结果强调了MSTN作为改善甲壳类水产养殖的遗传靶点的巨大潜力,特别是通过旨在增强生长性状的基因编辑技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信