南象海豹(miounga leonina)潜水呼吸气量随潜水的变化。

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-05-15 Epub Date: 2025-05-23 DOI:10.1242/jeb.249659
George Sato, Taiki Adachi, Christophe Guinet, Patrick Miller
{"title":"南象海豹(miounga leonina)潜水呼吸气量随潜水的变化。","authors":"George Sato, Taiki Adachi, Christophe Guinet, Patrick Miller","doi":"10.1242/jeb.249659","DOIUrl":null,"url":null,"abstract":"<p><p>The role of diving respiratory air volume (DRAV) in deep-diving phocid seals remains poorly understood, largely because of the lack of methods for measuring DRAV in free-ranging divers that exhale before diving. We developed a method to estimate DRAV using a hydrodynamic glide model applied to descent glides recorded using multi-sensor data loggers. We estimated dive-by-dive DRAV for six negatively buoyant female southern elephant seals (Mirounga leonina). During shallow descent glides, rapid compression of DRAV influenced net buoyancy and gliding speed, making this phase suitable for estimating DRAV. Our results revealed dive-by-dive variation in DRAV, which was positively correlated with root mean square (RMS) sway acceleration (a proxy for per-stroke effort) and the depth at which gliding began during the initial descent. DRAV increased with both tissue density and maximum dive depth, suggesting that seals adjusted their DRAV to stay closer to neutral buoyancy through their dives. However, the observed level of adjustment did not result in neutral buoyancy at half of the maximum dive depth, as predicted to minimise round-trip locomotion costs. Instead, the seals typically adjusted DRAV to reach neutral buoyancy at ∼30 m depth, <10% of their mean maximum dive depth. This indicates that strong negative tissue density imposes transit costs that cannot be fully compensated for by DRAV adjustment alone. Future work should explore whether other breath-hold divers show similar patterns of DRAV adjustment and quantify the associated physiological and ecological benefits.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dive-by-dive variation in the diving respiratory air volume of southern elephant seals (Mirounga leonina).\",\"authors\":\"George Sato, Taiki Adachi, Christophe Guinet, Patrick Miller\",\"doi\":\"10.1242/jeb.249659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of diving respiratory air volume (DRAV) in deep-diving phocid seals remains poorly understood, largely because of the lack of methods for measuring DRAV in free-ranging divers that exhale before diving. We developed a method to estimate DRAV using a hydrodynamic glide model applied to descent glides recorded using multi-sensor data loggers. We estimated dive-by-dive DRAV for six negatively buoyant female southern elephant seals (Mirounga leonina). During shallow descent glides, rapid compression of DRAV influenced net buoyancy and gliding speed, making this phase suitable for estimating DRAV. Our results revealed dive-by-dive variation in DRAV, which was positively correlated with root mean square (RMS) sway acceleration (a proxy for per-stroke effort) and the depth at which gliding began during the initial descent. DRAV increased with both tissue density and maximum dive depth, suggesting that seals adjusted their DRAV to stay closer to neutral buoyancy through their dives. However, the observed level of adjustment did not result in neutral buoyancy at half of the maximum dive depth, as predicted to minimise round-trip locomotion costs. Instead, the seals typically adjusted DRAV to reach neutral buoyancy at ∼30 m depth, <10% of their mean maximum dive depth. This indicates that strong negative tissue density imposes transit costs that cannot be fully compensated for by DRAV adjustment alone. Future work should explore whether other breath-hold divers show similar patterns of DRAV adjustment and quantify the associated physiological and ecological benefits.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249659\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249659","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

潜水呼吸气量(DRAV)在深潜密封中的作用仍然知之甚少,这主要是由于缺乏测量潜水前呼气的自由放养潜水员的DRAV的方法。我们开发了一种估算DRAV的方法,该方法使用水动力滑翔模型,该模型应用于使用多传感器数据记录器记录的下降滑翔。我们估计了6只负浮力雌性南象海豹(miounga leonina)的潜水深度。在浅层下降滑翔过程中,DRAV的快速压缩影响了净浮力和滑翔速度,因此这一阶段适合估算DRAV。我们的研究结果揭示了DRAV随潜水的变化,它与RMS摇摆加速度(代表每次划水努力)和最初下降时开始滑行的深度呈正相关。DRAV随着组织密度和最大潜水深度的增加而增加,这表明海豹在潜水过程中调整了它们的DRAV,以保持更接近中性浮力。然而,观察到的调整水平并没有在最大潜水深度的一半处产生中性浮力,正如预测的那样,可以最大限度地减少往返运动成本。相反,密封件通常会调整DRAV以在~ 30米深度达到中性浮力,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dive-by-dive variation in the diving respiratory air volume of southern elephant seals (Mirounga leonina).

The role of diving respiratory air volume (DRAV) in deep-diving phocid seals remains poorly understood, largely because of the lack of methods for measuring DRAV in free-ranging divers that exhale before diving. We developed a method to estimate DRAV using a hydrodynamic glide model applied to descent glides recorded using multi-sensor data loggers. We estimated dive-by-dive DRAV for six negatively buoyant female southern elephant seals (Mirounga leonina). During shallow descent glides, rapid compression of DRAV influenced net buoyancy and gliding speed, making this phase suitable for estimating DRAV. Our results revealed dive-by-dive variation in DRAV, which was positively correlated with root mean square (RMS) sway acceleration (a proxy for per-stroke effort) and the depth at which gliding began during the initial descent. DRAV increased with both tissue density and maximum dive depth, suggesting that seals adjusted their DRAV to stay closer to neutral buoyancy through their dives. However, the observed level of adjustment did not result in neutral buoyancy at half of the maximum dive depth, as predicted to minimise round-trip locomotion costs. Instead, the seals typically adjusted DRAV to reach neutral buoyancy at ∼30 m depth, <10% of their mean maximum dive depth. This indicates that strong negative tissue density imposes transit costs that cannot be fully compensated for by DRAV adjustment alone. Future work should explore whether other breath-hold divers show similar patterns of DRAV adjustment and quantify the associated physiological and ecological benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信