{"title":"Enhanced three-dimensional instance segmentation using multi-feature extracting point cloud neural network","authors":"Hongxu Wang, Jiepeng Liu, Dongsheng Li, Tianze Chen, Pengkun Liu, Han Yan, Yadong Wu","doi":"10.1111/mice.13430","DOIUrl":"https://doi.org/10.1111/mice.13430","url":null,"abstract":"Precise three-dimensional (3D) instance segmentation of indoor scenes plays a critical role in civil engineering, including reverse engineering, size detection, and advanced structural analysis. However, existing methods often fall short in accurately segmenting complex indoor environments due to challenges of diverse material textures, irregular object shapes, and inadequate datasets. To address these limitations, this paper introduces StructNet3D, a point cloud neural network specifically designed for instance segmentation in indoor components including ceilings, floors, and walls. StructNet3D employs a novel multi-scale 3D U-Net backbone integrated with ArchExtract, which designed to capture both global context and local structural details, enabling precise segmentation of diverse indoor environments. Compared to other methods, StructNet3D achieved an AP50 of 87.7 on the proprietary dataset and 68.6 on the S3DIS dataset, demonstrating its effectiveness in accurately segmenting and classifying major structural components within diverse indoor environments.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"58 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 40, Issue 4","authors":"","doi":"10.1111/mice.13426","DOIUrl":"10.1111/mice.13426","url":null,"abstract":"<p><b>The cover image</b> is based on the article <i>Modeling of spatially embedded networks via regional spatial graph convolutional networks</i> by Jürgen Hackl et al., https://doi.org/10.1111/mice.13286.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 4","pages":""},"PeriodicalIF":8.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A noise‐based framework for randomly generating soil particle with realistic geometry","authors":"Chen‐Xi Tong, Jia‐Jun Li, Quan Sun, Sheng Zhang, Wan‐Huan Zhou, Daichao Sheng","doi":"10.1111/mice.13424","DOIUrl":"https://doi.org/10.1111/mice.13424","url":null,"abstract":"Particle morphology influences the mechanical behavior of granular soils. Generating particles with realistic shapes for discrete element method simulations is gaining popularity. However, it is still challenging to efficiently generate very angular particles with less computational cost. Addressing this challenge, this paper introduces a novel noise‐based framework for generating realistic soil particle geometry. Noise algorithms are utilized to apply random variations with certain morphological patterns on the surface of the base geometry (e.g., a sphere), thereby generating a variety of particles with morphological patterns ranging from very angular to rounded. In addition, the base geometry can be replaced with other geometries including real particle scans, allowing rapid generation of realistic particles with morphological characteristics of the base geometry. The framework stands out for its simplicity, the wide range of particle morphologies generated, reducing the need for extensive computation and scanning, and provides a new idea for the granular soil behavior simulations.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"44 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gyalwang Dhundup, Jianing Zhou, Michael Bekoe, Lijun Sun, Sheng Mao, Yu Yan
{"title":"Integrating a mortar model into discrete element simulation for enhanced understanding of asphalt mixture cracking","authors":"Gyalwang Dhundup, Jianing Zhou, Michael Bekoe, Lijun Sun, Sheng Mao, Yu Yan","doi":"10.1111/mice.13425","DOIUrl":"https://doi.org/10.1111/mice.13425","url":null,"abstract":"Cracks impact the performance and durability of asphalt pavements, necessitating a comprehensive understanding of the mixture cracking behavior. While discrete element modeling has been implemented, many studies oversimplify the simulation of asphalt mortar, a critical component affecting mixture cracking resistance. This study proposes a mortar model that is applicable to both two‐dimensional (2D) and, to a preliminary extent, three‐dimensional (3D) simulations. The model incorporates a geometric representation of mortar distribution and a mechanical softening model to simulate damage accumulation and fracture. Laboratory and virtual Superpave indirect tensile tests were performed on asphalt mixtures with varying gradations at different aging levels. The virtual simulations successfully mirrored indoor test results in volumetric parameters, load–displacement behavior, and stress distribution. Minor differences in strength, strain, and fracture energy between virtual and indoor tests confirmed the accuracy of the mortar model. Notably, the 3D simulations provided a more accurate reconstruction of the cracking process, showing smaller discrepancies between virtual and indoor results, compared to the 2D simulations, with errors in stress, strain, and fracture energy of 5.6%, 5.7%, and 4.7%, respectively. Employing the mortar model in discrete element simulation revealed insights into fracture angle distribution and tendencies, enabling meticulous analysis of mixture damage characteristics and cracking behavior. This allows for the improved design of mixtures with excellent cracking performance and contributes to advancing computational methods that could complement laboratory testing.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"9 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic tiny crack positioning and width measurement with parallel laser line-camera system","authors":"Chaobin Li, R. K. L. Su","doi":"10.1111/mice.13420","DOIUrl":"https://doi.org/10.1111/mice.13420","url":null,"abstract":"Quantifying tiny cracks is crucial for assessing structural conditions. Traditional non-contact measurement technologies often struggle to accurately measure tiny crack widths, especially in hard-to-access areas. To address these challenges, this study introduces an image-based, handheld parallel laser line-camera (PLLC) system designed for automated tiny crack localization and width measurement from multiple angles and safe distances. Established by processing parallel laser strips, the camera coordinate system addresses crack positioning and pixel scale distortion challenges typical in non-perpendicular photography. The determined pixel scale enables accurate width measurement. An improved U-Net model automatically identifies crack pixels, enhancing detection accuracy. Additionally, the newly developed Equal Area algorithm enables the sub-pixel width measurement of tiny cracks. Comprehensive laboratory and field testing demonstrates the system's accuracy and feasibility across various conditions. This PLLC system achieves quantitative tiny crack detection in one shot, significantly enhancing the efficiency and utility of on-site inspections.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"33 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonghui An, Siyuan Gong, Zhongzheng Wang, Wei Shen, Zhihao Wang, Jinping Ou
{"title":"Theoretical analysis, simulation, and field experiment for vibration mitigation of suspender cables/hangers using the four-wire pendulum tuned mass damper","authors":"Yonghui An, Siyuan Gong, Zhongzheng Wang, Wei Shen, Zhihao Wang, Jinping Ou","doi":"10.1111/mice.13412","DOIUrl":"10.1111/mice.13412","url":null,"abstract":"<p>Suspender cables/hangers occupy a crucial role during the whole service life of suspension bridges/arch bridges/space structures, and their long-term repeated vibration under corrosion and high-stress service state will cause fatigue damage and even induce fatigue failure. To mitigate the vibration of the vertical suspender cables/hangers, a four-wire pendulum tuned mass damper (FWPTMD) is proposed. It mainly consists of the cross bracket, four pendulum ropes, the moving mass, and four universal rotating ball hinges that can rotate in any direction and provide damping. A suspender cable in a real suspension bridge is selected as the research object. First, the design procedure and effect of the modal mass ratio are provided; the optimization design method for parameters of optimal frequency ratio and optimal damping ratio is investigated in detail. Second, simulations are conducted to illustrate its feasibility, and results show excellent vibration mitigation effect. Third, the optimal FWPTMD is designed and fabricated; its performance is further validated by field experiments, and the results are very close to those in simulation. The FWPTMD has the advantages of simple structural form, convenient installation, low cost, easy tuning, easy maintenance, and so forth. Therefore, it can play an obvious vibration mitigation role in the life-cycle of the suspender cable/hanger, and it has a positive meaning to retard fatigue damage, extend the service life, and assure traffic safety under extreme weather.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 11","pages":"1528-1544"},"PeriodicalIF":8.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic determination of 3D particle morphology from multiview images using uncertainty-evaluated deep learning","authors":"Hongchen Liu, Huaizhi Su, Brian Sheil","doi":"10.1111/mice.13421","DOIUrl":"https://doi.org/10.1111/mice.13421","url":null,"abstract":"Particle morphology is a crucial factor influencing the mechanical properties of granular materials particularly in infrastructure construction processes where accurate shape descriptors are essential. Accurately measuring three-dimensional (3D) morphology has significant theoretical and practical value for exploring the multiscale mechanical properties of civil engineering materials. This study proposes a novel approach using multiview (two-dimensional [2D]) particle images to efficiently predict 3D morphology, making real-time aggregate quality analysis feasible. A 3D convolutional neural network (CNN) model is developed, which combines Monte Carlo dropout and attention mechanisms to achieve uncertainty-evaluated predictions of 3D morphology. The model incorporates a convolutional block attention module, involving a two-stage attention mechanism with channel attention and spatial attention, to further optimize feature representation and enhance the effectiveness of the attention mechanism. A new dataset comprising 18,000 images of 300 natural gravel and 300 blasted rock fragment particles is used for model training. The prediction accuracy and uncertainty of the proposed model are benchmarked against a range of alternative models including 2D CNN, 3D CNN, and 2D CNN with attention, in particular, to the influence of the number of input multiview particle images on the performance of the models for predicting various morphological parameters is explored. The results indicate that the proposed 3D CNN model with the attention mechanism achieves high prediction accuracy with an error of less than 10%. Whilst it exhibits initially greater uncertainty compared to other models due to its increased complexity, the model shows significant improvement in both accuracy and uncertainty as the number of training images is increased. Finally, residual challenges associated with the prediction of more complex particle angles and irregular shapes are also discussed.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"22 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Lin, Shuhei Abe, Shitao Zheng, Xianfeng Li, Pang-jo Chun
{"title":"A structure-oriented loss function for automated semantic segmentation of bridge point clouds","authors":"Chao Lin, Shuhei Abe, Shitao Zheng, Xianfeng Li, Pang-jo Chun","doi":"10.1111/mice.13422","DOIUrl":"10.1111/mice.13422","url":null,"abstract":"<p>Focusing on learning-based semantic segmentation (SS) methods for bridge point cloud data (PCD), this study proposes a structure-oriented concept (SOC) with training focused on the spatial distribution patterns of bridge components, including both the horizontally absolute location of each component and its vertically relative position compared with other components. Then a structure-oriented loss (SOL) function, which embodies the core of SOC, is defined accordingly, and it is compared to five cutting-edge loss functions on a collected bridge PCD dataset. In contrast to the limitations of other loss functions, SOL significantly improves the overall evaluation metrics of overall accuracy (6.53%) and mean intersection over union (mean IoU: 8.67%). The IoU of the category “others” is improved by 8.44%, which is very important for automating the time-consuming denoising process. Furthermore, the demonstrated robustness of SOC and SOL reveal great potential to improve the performance of other SS models.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 6","pages":"801-816"},"PeriodicalIF":8.5,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi‐supervised pipe video temporal defect interval localization","authors":"Zhu Huang, Gang Pan, Chao Kang, YaoZhi Lv","doi":"10.1111/mice.13403","DOIUrl":"https://doi.org/10.1111/mice.13403","url":null,"abstract":"In sewer pipe closed‐circuit television inspection, accurate temporal defect localization is essential for effective pipe assessment. Industry standards typically do not require time interval annotations, which are more informative but lead to additional costs for fully supervised methods. Additionally, differences in scene types and camera motion patterns between pipe inspections and temporal action localization (TAL) hinder the effective transfer of point‐supervised TAL methods. Therefore, this study presents a semi‐supervised multi‐prototype‐based method incorporating visual odometry for enhanced attention guidance (PipeSPO). The semi‐supervised multi‐prototype‐based method effectively leverages both unlabeled data and time‐point annotations, which enhances performance and reduces annotation costs. Meanwhile, visual odometry features exploit the camera's unique motion patterns in pipe videos, offering additional insights to inform the model. Experiments on real‐world datasets demonstrate that PipeSPO achieves 41.89% AP across intersection over union thresholds of 0.1–0.7, improving by 8.14% over current state‐of‐the‐art methods.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowei Liu, Jinqu Chen, Bo Du, Xu Yan, Qiyuan Peng, Jun Shen
{"title":"Resilience assessment of urban rail transit stations considering disturbance and time-varying passenger flow","authors":"Xiaowei Liu, Jinqu Chen, Bo Du, Xu Yan, Qiyuan Peng, Jun Shen","doi":"10.1111/mice.13400","DOIUrl":"10.1111/mice.13400","url":null,"abstract":"<p>Unlike most urban rail transit (URT) resilience studies on URT lines or networks under major disturbances, this paper focuses on the resilience assessment of URT stations under high-frequency daily disturbances with minor impacts. A resilience assessment metric with different resilience levels is proposed, which is calculated based on multiple criteria, including the number of delayed passengers, degree of congestion, economic loss from service suppliers’ perspective, extra in-station travel time, extra walking distance, and extra waiting time from passengers’ perspective. A two-stage passenger flow redistribution model is developed with stage one focusing on route adjustment under disturbance, while stage two determining the walking path within the disrupted station. A case study of Simaqiao Station in the Chengdu subway network in China is conducted. The numerical results indicate that this station demonstrates strong resilience in most scenarios, although it faces challenges under certain identified disturbances.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 12","pages":"1627-1651"},"PeriodicalIF":8.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13400","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}