Gang Pan, Chen Wang, Zhijie Sui, Shuai Guo, Yaozhi Lv, Honglie Li, Di Sun, Zixia Xia
{"title":"Sewer image super-resolution with depth priors and its lightweight network","authors":"Gang Pan, Chen Wang, Zhijie Sui, Shuai Guo, Yaozhi Lv, Honglie Li, Di Sun, Zixia Xia","doi":"10.1111/mice.13453","DOIUrl":null,"url":null,"abstract":"The quick-view (QV) technique serves as a primary method for detecting defects within sewerage systems. However, the effectiveness of QV is impeded by the limited visual range of its hardware, resulting in suboptimal image quality for distant portions of the sewer network. Image super-resolution is an effective way to improve image quality and has been applied in a variety of scenes. However, research on super-resolution for sewer images remains considerably unexplored. In response, this study leverages the inherent depth relationships present within QV images and introduces a novel Depth-guided, Reference-based Super-Resolution framework denoted as DSRNet. It comprises two core components: a depth extraction module and a depth information matching module (DMM). DSRNet utilizes the adjacent frames of the low-resolution image as reference images and helps them recover texture information based on the correlation. By combining these modules, the integration of depth priors significantly enhances both visual quality and performance benchmarks. Besides, in pursuit of computational efficiency and compactness, a super-resolution knowledge distillation model based on an attention mechanism is introduced. This mechanism facilitates the acquisition of feature similarity between a more complex teacher model and a streamlined student model, with the latter being a lightweight version of DSRNet. Experimental results demonstrate that DSRNet significantly improves peak signal-to-noise ratio (PSNR) and and Structural Similarity index (SSIM) compared with other methods. This study also conducts experiments on sewer defect semantic segmentation, object detection, and classification on the Pipe data set and Sewer-ML data set. Experiments show that the method can improve the performance of low-resolution sewer images in these tasks.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"48 9 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13453","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The quick-view (QV) technique serves as a primary method for detecting defects within sewerage systems. However, the effectiveness of QV is impeded by the limited visual range of its hardware, resulting in suboptimal image quality for distant portions of the sewer network. Image super-resolution is an effective way to improve image quality and has been applied in a variety of scenes. However, research on super-resolution for sewer images remains considerably unexplored. In response, this study leverages the inherent depth relationships present within QV images and introduces a novel Depth-guided, Reference-based Super-Resolution framework denoted as DSRNet. It comprises two core components: a depth extraction module and a depth information matching module (DMM). DSRNet utilizes the adjacent frames of the low-resolution image as reference images and helps them recover texture information based on the correlation. By combining these modules, the integration of depth priors significantly enhances both visual quality and performance benchmarks. Besides, in pursuit of computational efficiency and compactness, a super-resolution knowledge distillation model based on an attention mechanism is introduced. This mechanism facilitates the acquisition of feature similarity between a more complex teacher model and a streamlined student model, with the latter being a lightweight version of DSRNet. Experimental results demonstrate that DSRNet significantly improves peak signal-to-noise ratio (PSNR) and and Structural Similarity index (SSIM) compared with other methods. This study also conducts experiments on sewer defect semantic segmentation, object detection, and classification on the Pipe data set and Sewer-ML data set. Experiments show that the method can improve the performance of low-resolution sewer images in these tasks.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.