{"title":"Asphalt property prediction through high‐throughput molecular dynamics simulation","authors":"Meng Wu, Miaomiao Li, Zhanping You","doi":"10.1111/mice.13325","DOIUrl":"https://doi.org/10.1111/mice.13325","url":null,"abstract":"The relationship between saturate, aromatic, resin, and asphaltene (SARA) contents and asphalt properties remains unclear. This study aimed to propose a high‐throughput molecular dynamics simulation framework and demonstrate its application in rapidly building asphalt molecular models of various SARA ratios and predicting their properties, using density as an example. Based on the framework, 400 models with varying SARA ratios with different aging degrees were generated to calculate their densities and used to train machine learning algorithms. The ordinary least squares model achieved <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values exceeding 80%, and quantitative formulas linking asphalt density to SARA ratios were derived. It was found that saturate content negatively correlates with asphalt density, while resin content positively correlates with asphalt density. Additionally, asphalt density and viscosity increase with aging, influenced simultaneously by the SARA ratio and aging degree. Overall, this paper creates a rapid, high‐throughput molecular simulation pathway to predict asphalt behavior.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muduo Li, Xiaohong Zhu, Yuying Zhang, Daniel C. W. Tsang
{"title":"A multi-phase mechanical model of biochar–cement composites at the mesoscale","authors":"Muduo Li, Xiaohong Zhu, Yuying Zhang, Daniel C. W. Tsang","doi":"10.1111/mice.13307","DOIUrl":"10.1111/mice.13307","url":null,"abstract":"<p>This study presents a five-phase mesoscale modeling framework specifically developed to investigate crack propagation and mechanical properties of biochar–cement composites. The multi-phase model includes porous biochar particles with precise geometric construction, sand aggregates, cement matrix, and interfacial transition zone adjunct to both the biochar particles and sand aggregates. The 3D porous biochar library was first proposed and established in this study, which could provide an external interface for describing different pore shapes, wall thicknesses, and pore areas. All the simulation results were experimentally validated using a digital image correlation. Through precise geometric modeling, the unique failure modes and timing of biochar particles within the mortar were identified. This is analogous to the “strong column–weak beam” concept, accounting for the enhanced ductility observed in the biochar–cement composites under compression test. This work can advance the geometric modeling of porous aggregates broadly and elucidate their mesoscopic failure mechanisms in cementitious materials, thus providing new insights for developing high-ductility and lightweight cement composites.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 23","pages":"3552-3572"},"PeriodicalIF":8.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13307","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Announcing the 2023 Hojjat Adeli Award for Innovation in Computing","authors":"Gillian Greenough","doi":"10.1111/mice.13316","DOIUrl":"10.1111/mice.13316","url":null,"abstract":"","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 17","pages":"2558"},"PeriodicalIF":8.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 39, Issue 16","authors":"","doi":"10.1111/mice.13318","DOIUrl":"10.1111/mice.13318","url":null,"abstract":"<p><b>The cover image</b> is based on the Research Article <i>Automated signal-based evaluation of dynamic cone resistance via machine learning for subsurface characterization</i> by Samuel Olamide Aregbesola and Yong-Hoon Byun, https://doi.org/10.1111/mice.13294.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 16","pages":""},"PeriodicalIF":8.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 39, Issue 16","authors":"","doi":"10.1111/mice.13317","DOIUrl":"10.1111/mice.13317","url":null,"abstract":"<p><b>The cover image</b> is based on the Research Article <i>Railway sleeper vibration measurement by trainborne laser Doppler vibrometer and its speed-dependent characteristics</i> by Y. Zeng et al., https://doi.org/10.1111/mice.13150.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 16","pages":""},"PeriodicalIF":8.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation","authors":"Pang-jo Chun, Toshiya Kikuta","doi":"10.1111/mice.13315","DOIUrl":"10.1111/mice.13315","url":null,"abstract":"<p>This study proposes a novel self-training framework for unsupervised domain adaptation in the segmentation of concrete wall cracks using accumulated crack data. The proposed method incorporates Bayesian neural networks for uncertainty estimation of pseudo-labels, and spatial priors of cracks for screening noisy labels. Experiments demonstrate that the proposed approach achieves significant improvements in F1 score. Comparing the F1 scores, Bayesian DeepLabv3+ and Bayesian U-Net showed performance improvements of 0.0588 and 0.1501, respectively, after domain adaptation. Furthermore, the integration of Stable Diffusion for few-shot image generation enhances domain adaptation performance by 0.0332. The proposed framework enables high-precision crack segmentation with as few as 100 target images, which can be easily obtained at the site, reducing the cost of model deployment in infrastructure maintenance. The study also investigates the optimal number of iterations for domain adaptation based on the uncertainty score, providing insights for practical implementation. The proposed method contributes to the development of efficient and automated structural health monitoring using AI.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 17","pages":"2642-2661"},"PeriodicalIF":8.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated vision language and foundation model for automated estimation of building lowest floor elevation","authors":"Yu‐Hsuan Ho, Longxiang Li, Ali Mostafavi","doi":"10.1111/mice.13310","DOIUrl":"https://doi.org/10.1111/mice.13310","url":null,"abstract":"Street view imagery has emerged as a valuable resource for urban analytics research. Recent studies have explored its potential for estimating lowest floor elevation (LFE), offering a scalable alternative to traditional on‐site measurements, crucial for assessing properties' flood risk and damage extent. While existing methods rely on object detection, the introduction of image segmentation has expanded the utility of street view images for LFE estimation, although challenges still remain in segmentation quality and capability to distinguish front doors from other doors. To address these challenges in LFE estimation, this study integrates the Segment Anything model, a segmentation foundation model, with vision language models (VLMs) to conduct text‐prompt image segmentation on street view images for LFE estimation. By evaluating various VLMs, integration methods, and text prompts, the most suitable model was identified for street view image analytics and LFE estimation tasks, thereby improving the coverage of the current LFE estimation model based on image segmentation from 33% to 56% of properties. Remarkably, our proposed method, ELEV‐VISION‐SAM, significantly enhances the availability of LFE estimation to almost all properties in which the front door is visible in the street view image. In addition, the findings present the first baseline and quantified comparison of various vision models for street view image‐based LFE estimation. The model and findings not only contribute to advancing street view image segmentation for urban analytics but also provide a novel approach for image segmentation tasks for other civil engineering and infrastructure analytics tasks.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"109 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes","authors":"V. Cavanni, R. Ceravolo, G. Miraglia","doi":"10.1111/mice.13313","DOIUrl":"https://doi.org/10.1111/mice.13313","url":null,"abstract":"The unavailability of labeled data has always been the main limitation of data‐driven solutions for monitoring the health state of full‐scale structures. In this area, domain adaptation (DA) solutions have occasionally been proposed in recent years, which allow the sharing of data sets between distinct but similar systems. This paper presents a novel computational methodology to evaluate the condition state of historical buildings subjected to continuous monitoring. The DA method, specifically transfer component analysis, is used to maintain correlations between two data domains with low relevance, thereby improving the accuracy of classification models. Additionally, it is shown that the kernelized Bayesian transfer learning can enhance classification accuracy beyond what is achievable with a support vector machine. The paper is completed with a real‐world application to the classification of data sets from two Italian Baroque churches, both characterized by imposing oval masonry domes, but equipped with very different monitoring systems.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"52 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Taghizadeh, Mohammad Amin Nabian, Negin Alemazkoor
{"title":"Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling","authors":"Mehdi Taghizadeh, Mohammad Amin Nabian, Negin Alemazkoor","doi":"10.1111/mice.13312","DOIUrl":"https://doi.org/10.1111/mice.13312","url":null,"abstract":"Accurately predicting the dynamics of complex systems governed by partial differential equations (PDEs) is crucial in various applications. Traditional numerical methods such as finite element methods (FEMs) offer precision but are resource‐intensive, particularly at high mesh resolutions. Machine learning–based surrogate models, including graph neural networks (GNNs), present viable alternatives by reducing computation times. However, their accuracy is significantly contingent on the availability of substantial high‐fidelity training data. This paper presents innovative multifidelity GNN (MFGNN) frameworks that efficiently combine low‐fidelity and high‐fidelity data to train more accurate surrogate models for mesh‐based PDE simulations, while reducing training computational cost. The proposed methods capitalize on the strengths of GNNs to manage complex geometries across different fidelity levels. Incorporating a hierarchical learning strategy and curriculum learning techniques, the proposed models significantly reduce computational demands and improve the robustness and generalizability of the results. Extensive validations across various simulation tasks show that the MFGNN frameworks surpass traditional single‐fidelity GNN models. The proposed approaches, hence, provide a scalable and practical solution for conducting detailed computational analyses where traditional high‐fidelity simulations are time‐consuming.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"302 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Telescopic broad Bayesian learning for big data stream","authors":"Ka‐Veng Yuen, Sin‐Chi Kuok","doi":"10.1111/mice.13305","DOIUrl":"https://doi.org/10.1111/mice.13305","url":null,"abstract":"In this paper, a novel telescopic broad Bayesian learning (TBBL) is proposed for sequential learning. Conventional broad learning suffers from the singularity problem induced by the complexity explosion as data are accumulated. The proposed TBBL successfully overcomes the challenging issue and is feasible for sequential learning with big data streams. The learning network of TBBL is reconfigurable to adopt network augmentation and condensation. As time evolves, the learning network is augmented to incorporate the newly available data and additional network components. Meanwhile, the learning network is condensed to eliminate the network connections and components with insignificant contributions. Moreover, as a benefit of Bayesian inference, the uncertainty of the estimates can be quantified. To demonstrate the efficacy of the proposed TBBL, the performance on highly nonstationary piecewise time series and complex multivariate time series with 100 million data points are presented. Furthermore, an application for long‐term structural health monitoring is presented.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"102 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}