基于多投影平面的车辆轮载定位方法

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Sun, Xu Jiang, Xuhong Qiang
{"title":"基于多投影平面的车辆轮载定位方法","authors":"Kai Sun,&nbsp;Xu Jiang,&nbsp;Xuhong Qiang","doi":"10.1111/mice.13432","DOIUrl":null,"url":null,"abstract":"<p>Computer vision-based vehicle load monitoring methods could obtain spatiotemporal data of vehicle loads, which is important for bridge monitoring and operation. However, during the process of vehicle detection and tracking, current research usually focuses on the vehicle as a whole, and there is a lack of research on the accurate positioning of vehicle wheel loads. For the fatigue analysis of orthotropic steel deck, stress at the structural details belongs to the typical third-class system, and related research requires accurate wheel load position. Based on the principle of camera imaging, this study proposes an innovative vehicle wheel load location method based on vehicle license plate detection and multiple projective planes, and the accurate positioning of the vehicle center is achieved by the projective relationship matrix of different planes. Then, accurate measurement of the lateral wheelbase is achieved through secondary detection and projective transformation. Further, accurate wheel load tracking for fatigue research is achieved by the multi-objective tracking algorithm. Based on theoretical analysis and practical application results, the effectiveness and accuracy of this method have been verified. Different from traditional positioning methods based on vehicle detection boxes and 3D reconstruction boxes, the proposed method has higher accuracy and will play a fundamental role in the use of vehicle load spatiotemporal data for more accurate analysis such as fatigue research.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 14","pages":"1993-2009"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle wheel load positioning method based on multiple projective planes\",\"authors\":\"Kai Sun,&nbsp;Xu Jiang,&nbsp;Xuhong Qiang\",\"doi\":\"10.1111/mice.13432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computer vision-based vehicle load monitoring methods could obtain spatiotemporal data of vehicle loads, which is important for bridge monitoring and operation. However, during the process of vehicle detection and tracking, current research usually focuses on the vehicle as a whole, and there is a lack of research on the accurate positioning of vehicle wheel loads. For the fatigue analysis of orthotropic steel deck, stress at the structural details belongs to the typical third-class system, and related research requires accurate wheel load position. Based on the principle of camera imaging, this study proposes an innovative vehicle wheel load location method based on vehicle license plate detection and multiple projective planes, and the accurate positioning of the vehicle center is achieved by the projective relationship matrix of different planes. Then, accurate measurement of the lateral wheelbase is achieved through secondary detection and projective transformation. Further, accurate wheel load tracking for fatigue research is achieved by the multi-objective tracking algorithm. Based on theoretical analysis and practical application results, the effectiveness and accuracy of this method have been verified. Different from traditional positioning methods based on vehicle detection boxes and 3D reconstruction boxes, the proposed method has higher accuracy and will play a fundamental role in the use of vehicle load spatiotemporal data for more accurate analysis such as fatigue research.</p>\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"40 14\",\"pages\":\"1993-2009\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mice.13432\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13432","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于计算机视觉的车辆荷载监测方法能够获取车辆荷载的时空数据,对桥梁监测和运营具有重要意义。然而,在车辆检测和跟踪过程中,目前的研究通常是将车辆作为一个整体进行研究,缺乏对车辆车轮载荷精确定位的研究。正交各向异性钢桥面的疲劳分析,结构细部应力属于典型的三级系统,相关研究需要精确的轮载位置。基于摄像机成像原理,提出了一种基于车牌检测和多投影平面的车辆车轮载荷定位方法,通过不同平面的投影关系矩阵实现车辆中心的精确定位。然后,通过二次检测和投影变换,实现横向轴距的精确测量。采用多目标跟踪算法,实现了车轮载荷的精确跟踪。理论分析和实际应用结果验证了该方法的有效性和准确性。与传统的基于车辆检测盒和三维重建盒的定位方法不同,该方法具有更高的定位精度,将为利用车辆载荷时空数据进行更精确的分析(如疲劳研究)发挥基础性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle wheel load positioning method based on multiple projective planes

Computer vision-based vehicle load monitoring methods could obtain spatiotemporal data of vehicle loads, which is important for bridge monitoring and operation. However, during the process of vehicle detection and tracking, current research usually focuses on the vehicle as a whole, and there is a lack of research on the accurate positioning of vehicle wheel loads. For the fatigue analysis of orthotropic steel deck, stress at the structural details belongs to the typical third-class system, and related research requires accurate wheel load position. Based on the principle of camera imaging, this study proposes an innovative vehicle wheel load location method based on vehicle license plate detection and multiple projective planes, and the accurate positioning of the vehicle center is achieved by the projective relationship matrix of different planes. Then, accurate measurement of the lateral wheelbase is achieved through secondary detection and projective transformation. Further, accurate wheel load tracking for fatigue research is achieved by the multi-objective tracking algorithm. Based on theoretical analysis and practical application results, the effectiveness and accuracy of this method have been verified. Different from traditional positioning methods based on vehicle detection boxes and 3D reconstruction boxes, the proposed method has higher accuracy and will play a fundamental role in the use of vehicle load spatiotemporal data for more accurate analysis such as fatigue research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信