{"title":"Generative adversarial network based on domain adaptation for crack segmentation in shadow environments","authors":"Yingchao Zhang, Cheng Liu","doi":"10.1111/mice.13451","DOIUrl":null,"url":null,"abstract":"Precision segmentation of cracks is important in industrial non-destructive testing, but the presence of shadows in the actual environment can interfere with the segmentation results of cracks. To solve this problem, this study proposes a two-stage domain adaptation framework called GAN-DANet for crack segmentation in shadowed environments. In the first stage, CrackGAN uses adversarial learning to merge features from shadow-free and shadowed datasets, creating a new dataset with more domain-invariant features. In the second stage, the CrackSeg network innovatively integrates enhanced Laplacian filtering (ELF) into high-resolution net to enhance crack edges and texture features while filtering out shadow information. In this model, CrackGAN addresses domain shift by generating a new dataset with domain-invariant features, avoiding direct feature alignment between source and target domains. The ELF module in CrackSeg effectively enhances crack features and suppresses shadow interference, improving the segmentation model's robustness in shadowed environments. Experiments show that GAN-DANet improves the crack segmentation accuracy, with the mean intersection over union value increasing from 57.87 to 75.03, which surpasses the performance of existing state-of-the-art domain adaptation algorithms.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"2 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13451","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Precision segmentation of cracks is important in industrial non-destructive testing, but the presence of shadows in the actual environment can interfere with the segmentation results of cracks. To solve this problem, this study proposes a two-stage domain adaptation framework called GAN-DANet for crack segmentation in shadowed environments. In the first stage, CrackGAN uses adversarial learning to merge features from shadow-free and shadowed datasets, creating a new dataset with more domain-invariant features. In the second stage, the CrackSeg network innovatively integrates enhanced Laplacian filtering (ELF) into high-resolution net to enhance crack edges and texture features while filtering out shadow information. In this model, CrackGAN addresses domain shift by generating a new dataset with domain-invariant features, avoiding direct feature alignment between source and target domains. The ELF module in CrackSeg effectively enhances crack features and suppresses shadow interference, improving the segmentation model's robustness in shadowed environments. Experiments show that GAN-DANet improves the crack segmentation accuracy, with the mean intersection over union value increasing from 57.87 to 75.03, which surpasses the performance of existing state-of-the-art domain adaptation algorithms.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.