Vincent J. L. Gan, Difeng Hu, Yushuo Wang, Ruoming Zhai
{"title":"Automated indoor 3D scene reconstruction with decoupled mapping using quadruped robot and LiDAR sensor","authors":"Vincent J. L. Gan, Difeng Hu, Yushuo Wang, Ruoming Zhai","doi":"10.1111/mice.13450","DOIUrl":null,"url":null,"abstract":"Advancements in automated 3D scene reconstruction are essential for accurately capturing and documenting the current state of buildings and infrastructure. Traditional 3D reconstruction relies on laser scanning to obtain as-built conditions, but this process is often labor-intensive and time-consuming. This study introduces an optimization algorithm incorporating methods for viewpoint generation, occlusion detection and culling, and robot-moving trajectory identification. Additionally, the research investigates 3D reconstruction methods, comparing coupled and decoupled approaches to identify the most practical configuration for robotic scanning. Automation strategies for collision avoidance in human-centric environments are also explored, with adaptive control methods tested and validated for efficient point cloud data capture in indoor environments. This research advances the state-of-the-art in robotic scanning by providing a more precise and adaptive framework for 3D scene reconstruction. The results demonstrate the effectiveness of the proposed method in achieving high scan completeness and sufficient density in point cloud data, offering solutions for efficient robotic scanning.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"18 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13450","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in automated 3D scene reconstruction are essential for accurately capturing and documenting the current state of buildings and infrastructure. Traditional 3D reconstruction relies on laser scanning to obtain as-built conditions, but this process is often labor-intensive and time-consuming. This study introduces an optimization algorithm incorporating methods for viewpoint generation, occlusion detection and culling, and robot-moving trajectory identification. Additionally, the research investigates 3D reconstruction methods, comparing coupled and decoupled approaches to identify the most practical configuration for robotic scanning. Automation strategies for collision avoidance in human-centric environments are also explored, with adaptive control methods tested and validated for efficient point cloud data capture in indoor environments. This research advances the state-of-the-art in robotic scanning by providing a more precise and adaptive framework for 3D scene reconstruction. The results demonstrate the effectiveness of the proposed method in achieving high scan completeness and sufficient density in point cloud data, offering solutions for efficient robotic scanning.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.