{"title":"Development of a portable device for structural visual inspection","authors":"Jongbin Won, Minhyuk Song, Jongwoong Park","doi":"10.1111/mice.13399","DOIUrl":null,"url":null,"abstract":"<p>Visual inspection is crucial for the maintenance of built infrastructures, facilitating early detection and quantification of damage. Traditional manual methods, however, often require inspectors to access dangerous or inaccessible areas, posing significant safety risks and inefficiencies. In response to these challenges, this paper introduces a portable visual inspection device (VID) integrated with three laser distance meters and a high-resolution camera. The VID enhances the efficiency of visual inspection by incorporating methods that accurately estimate the camera's pose relative to the target surface and determine a scale factor for precise damage quantification. The proposed methods were validated through experimental validations, demonstrating their precision and effectiveness. In lab-scale validation, the angle estimation showed accuracy with less than 3 degrees of error, and the scale factor estimation method showed discrepancies of less than 1 mm, even when the observation angle exceeded 20 degrees. Subsequent field experiments confirmed the VID's capability to detect and measure microcracks as narrow as 0.1 mm. Furthermore, the device successfully quantified non-crack damage with an error margin of 1.84%, even at challenging angles exceeding 45 degrees.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 8","pages":"1061-1079"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13399","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual inspection is crucial for the maintenance of built infrastructures, facilitating early detection and quantification of damage. Traditional manual methods, however, often require inspectors to access dangerous or inaccessible areas, posing significant safety risks and inefficiencies. In response to these challenges, this paper introduces a portable visual inspection device (VID) integrated with three laser distance meters and a high-resolution camera. The VID enhances the efficiency of visual inspection by incorporating methods that accurately estimate the camera's pose relative to the target surface and determine a scale factor for precise damage quantification. The proposed methods were validated through experimental validations, demonstrating their precision and effectiveness. In lab-scale validation, the angle estimation showed accuracy with less than 3 degrees of error, and the scale factor estimation method showed discrepancies of less than 1 mm, even when the observation angle exceeded 20 degrees. Subsequent field experiments confirmed the VID's capability to detect and measure microcracks as narrow as 0.1 mm. Furthermore, the device successfully quantified non-crack damage with an error margin of 1.84%, even at challenging angles exceeding 45 degrees.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.