Hee Jung Lee, T. Kang, Jin S. Choi, Young-Pyo Hong, Woosang Lee
{"title":"Shielding Effectiveness of a PC Case Using Three-Axis Electro-optic Sensors","authors":"Hee Jung Lee, T. Kang, Jin S. Choi, Young-Pyo Hong, Woosang Lee","doi":"10.26866/jees.2023.1.r.138","DOIUrl":"https://doi.org/10.26866/jees.2023.1.r.138","url":null,"abstract":"This paper presents a measurement method for the shielding effectiveness (SE) of a personal computer (PC) case using three-axis electrooptic sensors and a vector network analyzer (VNA). The SE is obtained by taking the difference between the logarithmic values of the ratios of transmitted power to the input power for conditions with and without the PC case. The SE measurements versus the incident angle and polarization of incident electromagnetic fields are performed in a fully anechoic chamber (FAC) in the frequency range of 1 GHz to 4 GHz. A computer simulation is conducted to compare the experimental and numerical results. Additionally, we measured the SE of the PC case in a reverberation chamber (RC). The SE values of the PC case for the three axes in the case of FAC and RC are within 4 dB. The results show that this SE measurement technique, using electro-optic sensors and a VNA, is useful for both FAC and RC.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44618504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Dual-Band Branch-Line Coupler with Ultra-Wideband Harmonic Suppression","authors":"Xiao-Yu Zhang, Jong‐Chul Lee","doi":"10.26866/jees.2023.1.r.144","DOIUrl":"https://doi.org/10.26866/jees.2023.1.r.144","url":null,"abstract":"A dual-band branch-line coupler with ultra-wideband harmonic suppression is proposed in this paper. The conventional quarter-wavelength transmission lines are replaced with π-shaped lines to achieve a dual band. In addition, ultra-wideband harmonic suppression is obtained by the frequency-selecting coupling structure (FSCS) providing three transmission zeros. The two operating frequencies are 0.9 GHz and 2.0 GHz, and the corresponding -10 dB bandwidth at 0.9 GHz and 2.0 GHz is 18.9% and 10.5%, respectively. A wide harmonic suppression band is generated from 3.7 GHz to 8.3 GHz. The simulation and measurement results are in good agreement.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43344388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Front-End Receiver and Matrix for 2–18 GHz with a Searching and Tracking Function for an ELINT System","authors":"Yuseok Jeon, Jaejin Koo","doi":"10.26866/jees.2023.1.r.142","DOIUrl":"https://doi.org/10.26866/jees.2023.1.r.142","url":null,"abstract":"In this paper, we describe the design and fabrication of a front-end receiver and matrix modules for 2−18 GHz with high gain, good phase matching characteristics, and reliability; this was accomplished by applying a chip-and-wire process using a bare-type monolithic microwave integrated circuit (MMIC) device. To compensate for the mismatch among many sub-modules, a front-end module, matrix module, and built-in test module suitable for sub-band frequency characteristics were designed and applied to the direct receiver. The matrix box used a high-pass filter to remove unwanted low frequencies and a 4-way divider to distribute single input BIT signals. The broadband receiver module had two paths: a phase path and an amplitude path. Phase- and amplitude-matched radio frequency semi-rigid cables of different lengths were used to connect to the internal sub-modules of the matrix receiver. The main RF line was a dielectric substrate, RT/Duroid 5880, with a relative dielectric constant of 2.2 and a dielectric thickness of 0.127 mm. The sizes of the front-end receiver and matrix box were 137 mm × 120 mm × 31 mm and 250 mm × 238 mm × 138 mm, respectively. In the wideband frequency receiver module, the gain was 22.99 dB at mid-band (frequency 2−6 GHz) with a return loss of about 14.76 dB. Th e gain was 23.25 dB at a high band (frequency 6−18 GHz), having a return loss of about 11.63 dB. The peak values of phase matching among the channels for 2–6 GHz were ±3.30°, and the peak values of phase matching among the channels for 6–18 GHz were ±8.24°.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42952936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a UWB Antenna with Multiple Ports on a Single Circular Radiator for Direction-Finding Applications","authors":"Sangwoon Youn, B. Jang, H. Choo","doi":"10.26866/jees.2023.1.r.145","DOIUrl":"https://doi.org/10.26866/jees.2023.1.r.145","url":null,"abstract":"This paper proposes a single circular radiator with a multi-port (SRMP) antenna that can estimate the direction-of-arrival (DoA) in the azimuth and elevation directions. The proposed SRMP antenna is designed to minimize the size of the ultra-wideband system by using only one patch radiator. To verify the feasibility, the proposed antenna is fabricated, and the reflection coefficient and boresight gain are measured (-13.3 dB and 3.4 dBi at 8 GHz). Then, to observe the direction-finding performance, the DoA estimation results using the Bartlett beamformer are compared with the typical array. At all incident angles, a root-mean-square error of less than 1° is observed when the signal-to-noise ratio is higher than 6 dB.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47418966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Ali, Heesu Wang, Yeojun Yun, Sungjun Park, Y. B. Park, Jaejin Lee, I. Park
{"title":"A Wideband Ultra-Low-Profile Solar Cell–Integrated Antenna","authors":"Ahmed Ali, Heesu Wang, Yeojun Yun, Sungjun Park, Y. B. Park, Jaejin Lee, I. Park","doi":"10.26866/jees.2023.1.r.143","DOIUrl":"https://doi.org/10.26866/jees.2023.1.r.143","url":null,"abstract":"In this paper, a wideband ultra-low-profile solar cell–integrated antenna with a high form factor is presented. A copper indium gallium selenide-based solar cell was used for the proposed design. The solar cell was cut with a rectangular-shaped narrow slit to construct a built-in solar cell antenna with dimensions of 50 mm × 20 mm × 0.571 mm (0.382λo × 0.152λo × 0.0043λo at 2.28 GHz). The slit area needed to achieve a high form factor was only 0.5 mm × 18 mm. A coaxial-to-microstrip-line transition type of feeding structure was used to excite the antenna. An RF decoupler circuit was also designed under the second substrate to maintain the independent functioning of both devices. The simulated and measured results are in good agreement. Furthermore, the proposed design demonstrated a –10 dB impedance bandwidth of 42.45% with an ultra-low-profile structure of 0.0043λo at 2.28 GHz, and the maximum gain was 2.84 dBi in the impedance bandwidth range. In addition, the antenna has a high form factor of 99.1%, with no optical blockage.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45547750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Cross-Correlation Method for a Digital Phase Noise Measurement System","authors":"K. Yeom, Jin-Seong Roh","doi":"10.26866/jees.2022.6.r.136","DOIUrl":"https://doi.org/10.26866/jees.2022.6.r.136","url":null,"abstract":"In this paper, we propose a digital phase noise measurement using a 10-bit digital oscilloscope MXR608A from Keysight Technologies. The digital oscilloscope’s four channel data are used for digital phase noise measurement: two channels are assigned for the equally divided SUT (source under test), while the other two are assigned for the equally divided reference signals. First, we propose a cross correlation method to identify the phase noises added by the ADCs in the digital oscilloscope from the measured phase noises. Then, we propose a novel cross correlation method to extract the SUT phase noise. The cross-correlation output of the proposed method yields only the SUT phase noise and does not contain the reference signal phase noise unlike the traditional method. The proposed method was applied to measure the phase noises of the two SUTs, Keysight’s synthesized signal generator E8257D and function generator 33600A. The measured phase noises of the two SUTs were compared and found to show remarkable agreements with those measured using Keysight’s signal source analyzer E5052B. The phase noise floor of our digital phase noise measurement system is about -160 dBc/Hz.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49620516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min-Seok Park, Jeahoon Cho, Soonyong Lee, Youngkun Kwon, Kyung‐Young Jung
{"title":"New Measurement Technique for Complex Permittivity in Millimeter-Wave Band Using Simple Rectangular Waveguide Adapters","authors":"Min-Seok Park, Jeahoon Cho, Soonyong Lee, Youngkun Kwon, Kyung‐Young Jung","doi":"10.26866/jees.2022.6.r.130","DOIUrl":"https://doi.org/10.26866/jees.2022.6.r.130","url":null,"abstract":"This research presents a novel methodology for measuring the complex permittivity of a material under test (MUT) in a millimeter-wave (mmWave) band by using two rectangular waveguide adapters. Contrary to the conventional Nicolson-Ross-Weir (NRW) method, the proposed complex permittivity measurement method does not require a material fabrication process for exact MUT insertion into a waveguide. In our complex permittivity measurement, simple commercial waveguide adapters are employed instead of large flange structures. The proposed complex permittivity measurement of a non-destructive MUT is achieved by combining the NRW method, the Gaussian weighting moving average filtering technique, a full-wave electromagnetic analysis, and an optimization technique. Furthermore, the proposed methodology is validated by fabricating a Teflon-based MUT and by measuring the complex permittivity of the MUT in the Ka band (26.5–40 GHz). The results indicate that the proposed methodology exhibits good agreement with the data sheet.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44175573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Jung, Kunsik Park, J. Won, Doohyung Cho, Sung-Un Kwon, H. Jang, Jong-Won Lim
{"title":"Power Limiter with PIN Diode Embedded in Cavity to Minimize Parasitic Inductance","authors":"D. Jung, Kunsik Park, J. Won, Doohyung Cho, Sung-Un Kwon, H. Jang, Jong-Won Lim","doi":"10.26866/jees.2022.6.l.10","DOIUrl":"https://doi.org/10.26866/jees.2022.6.l.10","url":null,"abstract":"This letter introduces a power limiter that limits the input power to protect the receiver when a large power enters the radio frequency receiver. When the power limiter receives a large power signal, a positive-intrinsic-negative (PIN) diode is turned on to limit the input power by lowering the impedance. We analyzed the characteristics of the power limiter according to the method of connecting the PIN diode in parallel with the input and output transmission lines of the power limiter. By embedding a PIN diode into the cavity and minimizing the length of the wire, a power limiter was designed and implemented to minimize parasitic inductance. In the S-band, the proposed power limiter’s insertion loss was below 0.5 dB, and the reflection loss characteristics were below 15 dB. Furthermore, it achieved an output P1dB of 21.8 dBm at 3.5 GHz.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44731295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Tunable Bandpass Filter with Arbitrarily Terminated Port Impedance Using Dual-Mode Resonator","authors":"G. Chaudhary, Y. Jeong","doi":"10.26866/jees.2022.6.r.134","DOIUrl":"https://doi.org/10.26866/jees.2022.6.r.134","url":null,"abstract":"This paper presents a design for a compact arbitrarily terminated port impedance tunable bandpass filter (BPF) with transmission zeros (TZs) that employs a dual-mode resonator. The proposed dual-mode resonator comprises two varactors along with series transmission lines and a shunt short-circuited stub. The resonant frequency separation of the dual-mode resonator can be adjusted by changing the length or characteristic impedance of the short-circuited stub. To achieve arbitrarily terminated port impedances, the coupling between the source/load and the dual-resonator is modified from the originally designed 50-to-50 Ω termination filter. Frequency selective characteristics are achieved by generating two TZs at the lower and upper frequencies of the passband. The location of the TZs can be changed by controlling the source-load coupling. To experimentally validate the proposed tunable BPF, three prototypes (50-to-50 Ω BPF, 25-to- 50 Ω BPF, and 20 + j10-to-50 Ω BPFs) are designed and fabricated. The measurement results revealed that the center frequency can be tuned from 2.10 GHz to 3.02 GHz (920 MHz tunability), where the insertion loss varies from 1.50 to 2.5 dB.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46313473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Millimeter-Wave GaN MMIC Front End Module with 5G NR Performance Verification","authors":"J. Hwang, Jiho Lee, Kichan Kim, Han‐Lim Lee","doi":"10.26866/jees.2022.6.r.133","DOIUrl":"https://doi.org/10.26866/jees.2022.6.r.133","url":null,"abstract":"This paper proposes a millimeter-wave (mmWave) 5G front end module (FEM) based on multiple gallium nitride (GaN) monolithic microwave integrated circuits (MMICs) with 5G new radio (NR) performance verification. The proposed structure is configured by a wide band GaN single-pole double-throw (SPDT) switch MMIC, a GaN low-noise amplifier (LNA) MMIC, and a GaN power amplifier (PA) MMIC with the target operation band from 26.5 GHz to 29.5 GHz. The LNA and PA MMICs are designed with 150 nm GaN/SiC technology, and the SPDT MMIC is designed with 100 nm GaN/Si. The LNA MMIC shows the measured noise figure less than or equal to 2.52 dB within the operation band. The PA MMIC is based on a two-stage configuration and shows about 35 dBm measured saturated power with power-added efficiency better than 34% within the operation band. Also, the SPDT MMIC is based on an artificial transmission line configuration for wideband performance and shows that the measured insertion loss is less than 1.6 dB, and the measured isolation is higher than 25 dB within the operation band. Furthermore, all MMICs are integrated within a single carrier as an FEM and successfully verified by 5G NR test signals.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42940815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}