{"title":"An Efficient Cross-Correlation Method for a Digital Phase Noise Measurement System","authors":"K. Yeom, Jin-Seong Roh","doi":"10.26866/jees.2022.6.r.136","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a digital phase noise measurement using a 10-bit digital oscilloscope MXR608A from Keysight Technologies. The digital oscilloscope’s four channel data are used for digital phase noise measurement: two channels are assigned for the equally divided SUT (source under test), while the other two are assigned for the equally divided reference signals. First, we propose a cross correlation method to identify the phase noises added by the ADCs in the digital oscilloscope from the measured phase noises. Then, we propose a novel cross correlation method to extract the SUT phase noise. The cross-correlation output of the proposed method yields only the SUT phase noise and does not contain the reference signal phase noise unlike the traditional method. The proposed method was applied to measure the phase noises of the two SUTs, Keysight’s synthesized signal generator E8257D and function generator 33600A. The measured phase noises of the two SUTs were compared and found to show remarkable agreements with those measured using Keysight’s signal source analyzer E5052B. The phase noise floor of our digital phase noise measurement system is about -160 dBc/Hz.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.6.r.136","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a digital phase noise measurement using a 10-bit digital oscilloscope MXR608A from Keysight Technologies. The digital oscilloscope’s four channel data are used for digital phase noise measurement: two channels are assigned for the equally divided SUT (source under test), while the other two are assigned for the equally divided reference signals. First, we propose a cross correlation method to identify the phase noises added by the ADCs in the digital oscilloscope from the measured phase noises. Then, we propose a novel cross correlation method to extract the SUT phase noise. The cross-correlation output of the proposed method yields only the SUT phase noise and does not contain the reference signal phase noise unlike the traditional method. The proposed method was applied to measure the phase noises of the two SUTs, Keysight’s synthesized signal generator E8257D and function generator 33600A. The measured phase noises of the two SUTs were compared and found to show remarkable agreements with those measured using Keysight’s signal source analyzer E5052B. The phase noise floor of our digital phase noise measurement system is about -160 dBc/Hz.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.