Journal of Developmental Biology最新文献

筛选
英文 中文
Drosophila—A Model System for Developmental Biology 果蝇--发育生物学的模型系统
IF 2.7
Journal of Developmental Biology Pub Date : 2024-05-21 DOI: 10.3390/jdb12020015
N. Tolwinski
{"title":"Drosophila—A Model System for Developmental Biology","authors":"N. Tolwinski","doi":"10.3390/jdb12020015","DOIUrl":"https://doi.org/10.3390/jdb12020015","url":null,"abstract":"In this Special Issue, titled “Drosophila—A Model System for Developmental Biology”, we present a series of articles and reviews looking at the diverse ways that researchers are using the humble fruit fly, also known as the vinegar fly, to tackle the many aspects of development and homeostasis [...]","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine 多能干细胞对兽医生殖技术的新贡献
IF 2.7
Journal of Developmental Biology Pub Date : 2024-05-07 DOI: 10.3390/jdb12020014
Raiane Cristina Fratini de Castro, Tiago William Buranello, K. Recchia, A. F. de Souza, N. C. G. Pieri, F. Bressan
{"title":"Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine","authors":"Raiane Cristina Fratini de Castro, Tiago William Buranello, K. Recchia, A. F. de Souza, N. C. G. Pieri, F. Bressan","doi":"10.3390/jdb12020014","DOIUrl":"https://doi.org/10.3390/jdb12020014","url":null,"abstract":"The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Angiogenic, Matrix Remodeling, and Antimicrobial Factors in Preterm and Full-Term Human Umbilical Cords 早产和足月人类脐带中血管生成因子、基质重塑因子和抗菌因子的表征
IF 2.7
Journal of Developmental Biology Pub Date : 2024-05-01 DOI: 10.3390/jdb12020013
Kaiva Zīle Zariņa, Māra Pilmane
{"title":"Characterization of Angiogenic, Matrix Remodeling, and Antimicrobial Factors in Preterm and Full-Term Human Umbilical Cords","authors":"Kaiva Zīle Zariņa, Māra Pilmane","doi":"10.3390/jdb12020013","DOIUrl":"https://doi.org/10.3390/jdb12020013","url":null,"abstract":"Background: Little is known about morphogenetic changes in the umbilical cord during the maturation process. Extracellular matrix remodeling, angiogenesis, progenitor activity, and immunomodulation are represented by specific markers; therefore, the aim of this study was to determine the expression of matrix metalloproteinase-2 (MMP2), tissue inhibitor of metalloproteinases-2 (TIMP2), CD34, vascular endothelial growth factor (VEGF), and human β-defensin 2 (HBD2) in preterm and full-term human umbilical cord tissue. Methods: Samples of umbilical cord tissue were obtained from 17 patients and divided into two groups: very preterm and moderate preterm birth umbilical cords; late preterm birth and full-term birth umbilical cords. Routine histology examination was conducted. Marker-positive cells were detected using the immunohistochemistry method. The number of positive structures was counted semi-quantitatively using microscopy. Statistical analysis was carried out using the SPSS Statistics 29 program. Results: Extraembryonic mesenchyme cells are the most active cell producers, expressing MMP2, TIMP2, VEGF, and HBD2 at notable levels in preterm and full-term umbilical cord tissue. Statistically significant differences in the expression of CD34, MMP2, and TIMP2 between the two patient groups were found. The expression of VEGF was similar in both patient groups, with the highest number of VEGF-positive cells seen in the extraembryonic mesenchyme. The expression of HBD2 was the highest in the extraembryonic mesenchyme and the amniotic epithelium, where mostly moderate numbers of HBD2-positive cells were detected. Conclusions: Extracellular matrix remodeling in preterm and term umbilical cords is strongly regulated, and tissue factors MMP2 and TIMP2 take part in this process. The expression of VEGF is not affected by the umbilical cord’s age; however, individual patient factors can affect the production of VEGF. Numerous CD34-positive cells in the endothelium of the umbilical arteries suggest a significant role of progenitor cells in very preterm and moderate preterm birth umbilical cords. Antimicrobial activity provided by HBD2 is essential and constant in preterm and full-term umbilical cords.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141029229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. 平面细胞极性信号:细胞定向的协调串扰
IF 2.7
Journal of Developmental Biology Pub Date : 2024-04-29 DOI: 10.3390/jdb12020012
Sandeep Kacker, Varuneshwar Parsad, Naveen Singh, Daria Hordiichuk, Stacy Alvarez, Mahnoor Gohar, Anshu Kacker, Sunil Kumar Rai
{"title":"Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation.","authors":"Sandeep Kacker, Varuneshwar Parsad, Naveen Singh, Daria Hordiichuk, Stacy Alvarez, Mahnoor Gohar, Anshu Kacker, Sunil Kumar Rai","doi":"10.3390/jdb12020012","DOIUrl":"10.3390/jdb12020012","url":null,"abstract":"<p><p>The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Residual N-Terminal Peptide Enhances Signaling of Depalmitoylated Hedgehog to the Patched Receptor 残留的 N 端肽增强了去棕榈酰化刺猬蛋白对 Patched 受体的信号传递
IF 2.7
Journal of Developmental Biology Pub Date : 2024-04-09 DOI: 10.3390/jdb12020011
S.F. Ehlers, D. Manikowski, Georg Steffes, K. Ehring, F. Gude, K. Grobe
{"title":"A Residual N-Terminal Peptide Enhances Signaling of Depalmitoylated Hedgehog to the Patched Receptor","authors":"S.F. Ehlers, D. Manikowski, Georg Steffes, K. Ehring, F. Gude, K. Grobe","doi":"10.3390/jdb12020011","DOIUrl":"https://doi.org/10.3390/jdb12020011","url":null,"abstract":"During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate. In this paper, we describe the serum-dependent conversion of the dually lipidated cellular precursor into a soluble cholesteroylated variant (ShhC) during its release. Although ShhC is formed in a Dispatched- and Scube2-dependent manner, suggesting the physiological relevance of the protein, the depalmitoylation of ShhC during release is inconsistent with the previously postulated function of N-palmitate in Ptch receptor binding and signaling. Therefore, we analyzed the potency of ShhC to induce Ptch-controlled target cell transcription and differentiation in Hh-sensitive reporter cells and in the Drosophila eye. In both experimental systems, we found that ShhC was highly bioactive despite the absence of the N-palmitate. We also found that the artificial removal of N-terminal peptides longer than eight amino acids inactivated the depalmitoylated soluble proteins in vitro and in the developing Drosophila eye. These results demonstrate that N-depalmitoylated ShhC requires an N-peptide of a defined minimum length for its signaling function to Ptch.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140721689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes 单磷酸环磷酸腺苷对绵羊积液-卵母细胞复合物中连接蛋白 37 表达的影响
IF 2.7
Journal of Developmental Biology Pub Date : 2024-03-27 DOI: 10.3390/jdb12020010
Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao, Haijun Li
{"title":"Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes","authors":"Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao, Haijun Li","doi":"10.3390/jdb12020010","DOIUrl":"https://doi.org/10.3390/jdb12020010","url":null,"abstract":"Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Impacts of Epigenetics and Metabolism in COVID-19 表观遗传学和新陈代谢对 COVID-19 发育的影响
IF 2.7
Journal of Developmental Biology Pub Date : 2024-02-09 DOI: 10.3390/jdb12010009
Noopur C. Naik, Mansi Patel, Rwik Sen
{"title":"Developmental Impacts of Epigenetics and Metabolism in COVID-19","authors":"Noopur C. Naik, Mansi Patel, Rwik Sen","doi":"10.3390/jdb12010009","DOIUrl":"https://doi.org/10.3390/jdb12010009","url":null,"abstract":"Developmental biology is intricately regulated by epigenetics and metabolism but the mechanisms are not completely understood. The situation becomes even more complicated during diseases where all three phenomena are dysregulated. A salient example is COVID-19, where the death toll exceeded 6.96 million in 4 years, while the virus continues to mutate into different variants and infect people. Early evidence during the pandemic showed that the host’s immune and inflammatory responses to COVID-19 (like the cytokine storm) impacted the host’s metabolism, causing damage to the host’s organs and overall physiology. The involvement of angiotensin-converting enzyme 2 (ACE2), the pivotal host receptor for the SARS-CoV-2 virus, was identified and linked to epigenetic abnormalities along with other contributing factors. Recently, studies have revealed stronger connections between epigenetics and metabolism in COVID-19 that impact development and accelerate aging. Patients manifest systemic toxicity, immune dysfunction and multi-organ failure. Single-cell multiomics and other state-of-the-art high-throughput studies are only just beginning to demonstrate the extent of dysregulation and damage. As epigenetics and metabolism directly impact development, there is a crucial need for research implementing cutting-edge technology, next-generation sequencing, bioinformatics analysis, the identification of biomarkers and clinical trials to help with prevention and therapeutic interventions against similar threats in the future.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139849011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regeneration Abilities among Extant Animals Depend on Their Evolutionary History and Life Cycles 现存动物的再生能力取决于其进化历史和生命周期
IF 2.7
Journal of Developmental Biology Pub Date : 2024-02-09 DOI: 10.3390/jdb12010008
L. Alibardi
{"title":"Regeneration Abilities among Extant Animals Depend on Their Evolutionary History and Life Cycles","authors":"L. Alibardi","doi":"10.3390/jdb12010008","DOIUrl":"https://doi.org/10.3390/jdb12010008","url":null,"abstract":"The present brief manuscript summarizes the main points supporting recently proposed hypotheses explaining the different distributions of regenerative capacity among invertebrates and vertebrates. The new hypotheses are based on the evolution of regeneration from marine animals to the terrestrial animals derived from them. These speculations suggest that animals that were initially capable of broad regeneration in the sea underwent epigenetic modifications during terrestrial adaptation that determined the loss of their regenerative abilities in sub-aerial conditions. These changes derived from the requirements of life on land that include variable dry and UV-exposed conditions. Terrestrial conditions do not allow for organ regeneration, especially in arthropods and amniotes. Nematodes, the other main metazoan group unable of regeneration, instead evolved eutely (a fixed number of body cells), a process which is incompatible with regeneration. All these changes involved gene loss, modification and new gene interactions within the genomes of terrestrial adapting animals that gave rise to sophisticated invertebrates and vertebrates adapted to living on land but with low cellular plasticity.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Impacts of Epigenetics and Metabolism in COVID-19 表观遗传学和新陈代谢对 COVID-19 发育的影响
IF 2.7
Journal of Developmental Biology Pub Date : 2024-02-09 DOI: 10.3390/jdb12010009
Noopur C. Naik, Mansi Patel, Rwik Sen
{"title":"Developmental Impacts of Epigenetics and Metabolism in COVID-19","authors":"Noopur C. Naik, Mansi Patel, Rwik Sen","doi":"10.3390/jdb12010009","DOIUrl":"https://doi.org/10.3390/jdb12010009","url":null,"abstract":"Developmental biology is intricately regulated by epigenetics and metabolism but the mechanisms are not completely understood. The situation becomes even more complicated during diseases where all three phenomena are dysregulated. A salient example is COVID-19, where the death toll exceeded 6.96 million in 4 years, while the virus continues to mutate into different variants and infect people. Early evidence during the pandemic showed that the host’s immune and inflammatory responses to COVID-19 (like the cytokine storm) impacted the host’s metabolism, causing damage to the host’s organs and overall physiology. The involvement of angiotensin-converting enzyme 2 (ACE2), the pivotal host receptor for the SARS-CoV-2 virus, was identified and linked to epigenetic abnormalities along with other contributing factors. Recently, studies have revealed stronger connections between epigenetics and metabolism in COVID-19 that impact development and accelerate aging. Patients manifest systemic toxicity, immune dysfunction and multi-organ failure. Single-cell multiomics and other state-of-the-art high-throughput studies are only just beginning to demonstrate the extent of dysregulation and damage. As epigenetics and metabolism directly impact development, there is a crucial need for research implementing cutting-edge technology, next-generation sequencing, bioinformatics analysis, the identification of biomarkers and clinical trials to help with prevention and therapeutic interventions against similar threats in the future.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139789128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regeneration Abilities among Extant Animals Depend on Their Evolutionary History and Life Cycles 现存动物的再生能力取决于其进化历史和生命周期
IF 2.7
Journal of Developmental Biology Pub Date : 2024-02-09 DOI: 10.3390/jdb12010008
L. Alibardi
{"title":"Regeneration Abilities among Extant Animals Depend on Their Evolutionary History and Life Cycles","authors":"L. Alibardi","doi":"10.3390/jdb12010008","DOIUrl":"https://doi.org/10.3390/jdb12010008","url":null,"abstract":"The present brief manuscript summarizes the main points supporting recently proposed hypotheses explaining the different distributions of regenerative capacity among invertebrates and vertebrates. The new hypotheses are based on the evolution of regeneration from marine animals to the terrestrial animals derived from them. These speculations suggest that animals that were initially capable of broad regeneration in the sea underwent epigenetic modifications during terrestrial adaptation that determined the loss of their regenerative abilities in sub-aerial conditions. These changes derived from the requirements of life on land that include variable dry and UV-exposed conditions. Terrestrial conditions do not allow for organ regeneration, especially in arthropods and amniotes. Nematodes, the other main metazoan group unable of regeneration, instead evolved eutely (a fixed number of body cells), a process which is incompatible with regeneration. All these changes involved gene loss, modification and new gene interactions within the genomes of terrestrial adapting animals that gave rise to sophisticated invertebrates and vertebrates adapted to living on land but with low cellular plasticity.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139847856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信