Vladimira Foteva, Joshua J Fisher, Yixue Qiao, Roger Smith
{"title":"Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro.","authors":"Vladimira Foteva, Joshua J Fisher, Yixue Qiao, Roger Smith","doi":"10.3390/jdb13010008","DOIUrl":null,"url":null,"abstract":"<p><p>Molybdenum is an essential trace element sourced during pregnancy from the maternal diet. Studies regarding molybdenum have primarily focused on overexposure in animal and cell culture studies. The effects of molybdenum supplementation on placental function are unknown. An immortalised trophoblast cell line was used to examine the placental cellular response to molybdenum in its bioavailable form as molybdate. Cells of the extravillous trophoblast first-trimester cell line HTR8-SVneo were cultured in complete cell media in the presence of 10 nM to 1 mM of ammonium molybdate or sodium molybdate. Following the addition of the molybdate salts, cell growth, viability, and several gene pathways were monitored. Sodium molybdate salt in doses from 10 nM to 1 mM did not affect cell growth or viability. Exposure to ammonium molybdate at a 1 mM concentration significantly decreased cell growth and viability (<i>p</i> < 0.05). Gene pathways involving molybdoenzyme expression, molybdenum cofactor synthesis, antioxidant response, and angiogenesis were affected following supplementation, although these effects differed depending on the dose and molybdate salt utilised. Molybdoenzyme activity was not affected by supplementation in a dose-dependent manner. The results indicate sodium molybdate is a more appropriate salt to use in vitro, as ammonium molybdate exposure reduced cell viability and growth and downregulated the expression of antioxidant genes <i>NFE2L2</i> (<i>p</i> < 0.01), <i>SOD1</i> (<i>p</i> < 0.001) and <i>SOD2</i> (<i>p</i> < 0.001), suggestive of an inflammatory response. Sodium molybdate affected gene, protein, and activity levels of molybdoenzyme, antioxidant, and angiogenic molecules in vitro. This work demonstrates that sodium molybdate supplementation has pleiotropic effects in vitro and is well tolerated by placental cells at a range of nanomolar and micromolar concentrations.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb13010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molybdenum is an essential trace element sourced during pregnancy from the maternal diet. Studies regarding molybdenum have primarily focused on overexposure in animal and cell culture studies. The effects of molybdenum supplementation on placental function are unknown. An immortalised trophoblast cell line was used to examine the placental cellular response to molybdenum in its bioavailable form as molybdate. Cells of the extravillous trophoblast first-trimester cell line HTR8-SVneo were cultured in complete cell media in the presence of 10 nM to 1 mM of ammonium molybdate or sodium molybdate. Following the addition of the molybdate salts, cell growth, viability, and several gene pathways were monitored. Sodium molybdate salt in doses from 10 nM to 1 mM did not affect cell growth or viability. Exposure to ammonium molybdate at a 1 mM concentration significantly decreased cell growth and viability (p < 0.05). Gene pathways involving molybdoenzyme expression, molybdenum cofactor synthesis, antioxidant response, and angiogenesis were affected following supplementation, although these effects differed depending on the dose and molybdate salt utilised. Molybdoenzyme activity was not affected by supplementation in a dose-dependent manner. The results indicate sodium molybdate is a more appropriate salt to use in vitro, as ammonium molybdate exposure reduced cell viability and growth and downregulated the expression of antioxidant genes NFE2L2 (p < 0.01), SOD1 (p < 0.001) and SOD2 (p < 0.001), suggestive of an inflammatory response. Sodium molybdate affected gene, protein, and activity levels of molybdoenzyme, antioxidant, and angiogenic molecules in vitro. This work demonstrates that sodium molybdate supplementation has pleiotropic effects in vitro and is well tolerated by placental cells at a range of nanomolar and micromolar concentrations.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.