CRISPR/ cas9靶向肌生成抑制素缺失改善小鼠肌源性干细胞的分化参数

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Mohamed I Elashry, Victoria C Schneider, Manuela Heimann, Sabine Wenisch, Stefan Arnhold
{"title":"CRISPR/ cas9靶向肌生成抑制素缺失改善小鼠肌源性干细胞的分化参数","authors":"Mohamed I Elashry, Victoria C Schneider, Manuela Heimann, Sabine Wenisch, Stefan Arnhold","doi":"10.3390/jdb13010005","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn<sup>-/-</sup>) were compared with C2C12 (Mstn<sup>+/+</sup>) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn<sup>-/-</sup> cells. Mstn<sup>-/-</sup> cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn<sup>-/-</sup> clones. The Mstn<sup>-/-</sup> editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn<sup>-/-</sup> cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843916/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9-Targeted <i>Myostatin</i> Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice.\",\"authors\":\"Mohamed I Elashry, Victoria C Schneider, Manuela Heimann, Sabine Wenisch, Stefan Arnhold\",\"doi\":\"10.3390/jdb13010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn<sup>-/-</sup>) were compared with C2C12 (Mstn<sup>+/+</sup>) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn<sup>-/-</sup> cells. Mstn<sup>-/-</sup> cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn<sup>-/-</sup> clones. The Mstn<sup>-/-</sup> editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn<sup>-/-</sup> cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb13010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb13010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌在身体活动、蛋白质储存和能量利用中起着关键作用。由于固定、衰老、肌肉萎缩和癌症恶病质导致的骨骼肌萎缩对生活质量有负面影响。肌肉生长抑制素,一种生长和分化因子-8 (GDF-8)的缺失通过肌纤维的增生和肥大来增加肌肉质量。本研究利用CRISPR/Cas9编辑技术检测肌肉生长抑制素缺失对C2C12肌肉干细胞的肌源性分化(MD)的影响。总共有5个肌生成抑制素基因座是用先前克隆到载体中的引导rna靶向的。通过电穿孔将克隆转染到C2C12细胞中。通过MTT、磺胺嘧啶B、免疫细胞化学、形态计量学分析和RT-qPCR等一系列检测,比较肌生成他汀编辑克隆(Mstn-/-)与C2C12 (Mstn+/+)的细胞活力和MD。克隆测序显示在Mstn-/-细胞中核苷酸缺失的证据。Mstn-/-细胞表现出正常的生理性能和缺乏细胞毒性。MyoD和myogenin表达的上调证明了肌生长抑制素的减少促进了肌生成的承诺。分化的Mstn-/-克隆中myod阳性细胞数量增加。Mstn-/-编辑上调mTOR和MyH的表达,并增加肌管的大小。Mstn-/-细胞的分化上调ActRIIb;相反,它下调了decorin的表达。数据提供了CRISPR/ cas9介导的肌生成抑制素删除成功的证据。此外,靶向肌肉生长抑制素可能是促进MD和恢复肌肉损失的有益治疗策略。总之,这些数据表明,在体内应用之前,使用CRISPR/Cas9编辑肌肉生长抑制素可能是一种潜在的治疗操作,可以提高肌肉干细胞的再生能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice.

Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信