Christopher M Sande, Stone Chen, Dana V Mitchell, Ping Lin, Diana M Abraham, Jessie M Cheng, Talia Gebhard, Rujul J Deolikar, Colby Freeman, Mary Zhou, Sushant Kumar, Michael Bowman, Robert L Bowman, Shannon Zheng, Bolormaa Munkhbileg, Qijun Chen, Natasha L Stanley, Kathy Guo, Ajibike Lapite, Ryan Hausler, Deanne M Taylor, James Corines, Jennifer Jd Morrissette, David B Lieberman, Guang Yang, Olga Shestova, Saar Gill, Jiayin Zheng, Kelcy Smith-Simmer, Lauren G Banaszak, Kyle N Shoger, Erica F Reinig, Madilynn Peterson, Peter Nicholas, Amanda J Walne, Inderjeet Dokal, Justin P Rosenheck, Karolyn A Oetjen, Daniel C Link, Andrew E Gelman, Christopher R Reilly, Ritika Dutta, R Coleman Lindsley, Karyn J Brundige, Suneet Agarwal, Alison A Bertuch, Jane E Churpek, Laneshia K Tague, F Brad Johnson, Timothy S Olson, Daria V Babushok
{"title":"ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders.","authors":"Christopher M Sande, Stone Chen, Dana V Mitchell, Ping Lin, Diana M Abraham, Jessie M Cheng, Talia Gebhard, Rujul J Deolikar, Colby Freeman, Mary Zhou, Sushant Kumar, Michael Bowman, Robert L Bowman, Shannon Zheng, Bolormaa Munkhbileg, Qijun Chen, Natasha L Stanley, Kathy Guo, Ajibike Lapite, Ryan Hausler, Deanne M Taylor, James Corines, Jennifer Jd Morrissette, David B Lieberman, Guang Yang, Olga Shestova, Saar Gill, Jiayin Zheng, Kelcy Smith-Simmer, Lauren G Banaszak, Kyle N Shoger, Erica F Reinig, Madilynn Peterson, Peter Nicholas, Amanda J Walne, Inderjeet Dokal, Justin P Rosenheck, Karolyn A Oetjen, Daniel C Link, Andrew E Gelman, Christopher R Reilly, Ritika Dutta, R Coleman Lindsley, Karyn J Brundige, Suneet Agarwal, Alison A Bertuch, Jane E Churpek, Laneshia K Tague, F Brad Johnson, Timothy S Olson, Daria V Babushok","doi":"10.1172/JCI181659","DOIUrl":"https://doi.org/10.1172/JCI181659","url":null,"abstract":"<p><p>Telomere biology disorders (TBD) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. 47.6% of patients (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ATM. Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell growth assays, we demonstrate telomere dysfunction-induced activation of ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sieun Lee, Jihye Park, Seongran Cho, Eun Ju Kim, Seonyeong Oh, Younseo Lee, Sungsoo Park, Keunsoo Kang, Dong Hoon Shin, Song Yi Ko, Jonathan M Kurie, Young-Ho Ahn
{"title":"Hyaluronan network remodeling by ZEB1 and ITIH2 enhances the motility and invasiveness of cancer cells.","authors":"Sieun Lee, Jihye Park, Seongran Cho, Eun Ju Kim, Seonyeong Oh, Younseo Lee, Sungsoo Park, Keunsoo Kang, Dong Hoon Shin, Song Yi Ko, Jonathan M Kurie, Young-Ho Ahn","doi":"10.1172/JCI180570","DOIUrl":"https://doi.org/10.1172/JCI180570","url":null,"abstract":"<p><p>Hyaluronan (HA) in the extracellular matrix promotes epithelial-to-mesenchymal transition (EMT) and metastasis; however, the mechanism by which the HA network constructed by cancer cells regulates cancer progression and metastasis in the tumor microenvironment (TME) remains largely unknown. In this study, inter-alpha-trypsin inhibitor heavy chain 2 (ITIH2), an HA-binding protein, was confirmed to be secreted from mesenchymal-like lung cancer cells when co-cultured with cancer-associated fibroblasts. ITIH2 expression is transcriptionally upregulated by the EMT-inducing transcription factor ZEB1, along with HA synthase 2 (HAS2), which positively correlates with ZEB1 expression. Depletion of ITIH2 and HAS2 reduced HA matrix formation and the migration and invasion of lung cancer cells. Furthermore, ZEB1 facilitates alternative splicing and isoform expression of CD44, an HA receptor, and CD44 knockdown suppresses the motility and invasiveness of lung cancer cells. Using a deep learning-based drug-target interaction algorithm, we identified an ITIH2 inhibitor (sincalide) that inhibited HA matrix formation and migration of lung cancer cells, preventing metastatic colonization of lung cancer cells in mouse models. These findings suggest that ZEB1 remodels the HA network in the TME through the regulation of ITIH2, HAS2, and CD44, presenting a strategy for targeting this network to suppress lung cancer progression.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avy Violari, Kennedy Otwombe, William Hahn, Shiyu Chen, Deirdre Josipovic, Vuyelwa Baba, Asimenia Angelidou, Kinga K Smolen, Ofer Levy, Nonhlanhla N Mkhize, Amanda S Woodward Davis, Troy M Martin, Barton F Haynes, Wilton B Williams, Zachary K Sagawa, James G Kublin, Laura Polakowski, Margaret Brewinski Isaacs, Catherine Yen, Georgia Tomaras, Lawrence Corey, Holly Janes, Glenda E Gray
{"title":"Safety and implementation of phase 1 randomized GLA-SE-adjuvanted CH505TF gp120 HIV vaccine trial in newborns.","authors":"Avy Violari, Kennedy Otwombe, William Hahn, Shiyu Chen, Deirdre Josipovic, Vuyelwa Baba, Asimenia Angelidou, Kinga K Smolen, Ofer Levy, Nonhlanhla N Mkhize, Amanda S Woodward Davis, Troy M Martin, Barton F Haynes, Wilton B Williams, Zachary K Sagawa, James G Kublin, Laura Polakowski, Margaret Brewinski Isaacs, Catherine Yen, Georgia Tomaras, Lawrence Corey, Holly Janes, Glenda E Gray","doi":"10.1172/JCI186927","DOIUrl":"https://doi.org/10.1172/JCI186927","url":null,"abstract":"<p><strong>Background: </strong>The neonatal immune system is uniquely poised to generate broadly neutralizing antibodies (bnAbs) and thus infants are ideal for evaluating HIV vaccine candidates. We present the design and safety of a new-in-infants glucopyranosyl lipid A (GLA)-stable emulsion (SE) adjuvant admixed with a first-in-infant CH505 transmitter-founder (CH505TF) gp120 immunogen designed to induce precursors for bnAbs against HIV.</p><p><strong>Methods: </strong>HVTN 135 is a phase I randomized, placebo-controlled trial of CH505TF+GLA-SE or placebo. Healthy infants aged ≤ 5 days, born to mothers living with HIV but HIV nucleic acid negative at birth were randomized to five doses of CH505TF + GLA-SE or placebo at birth and 8, 16, 32, and 54 weeks.</p><p><strong>Results: </strong>38 infants (median age = 4 days; interquartile range 4, 4.75 days) were enrolled November 2020 to January 2022. Among 28 (10) infants assigned to receive CH505TF + GLA-SE (placebo), most (32/38) completed the 5-dose immunization series and follow-up (35/38). Solicited local and systemic reactions were more frequent in vaccine (8, 28.6% local; 16, 57.1% systemic) vs. placebo recipients (1, 10% local, P = 0.25; 4, 40.0% systemic, P = 0.38). All events were Grade 1 except two Grade 2 events (pain, lethargy). Serious vaccine-related adverse events were not recorded.</p><p><strong>Conclusions: </strong>This study illustrates the feasibility of conducting trials of new-in-infants adjuvanted HIV vaccines in HIV-exposed infants receiving standard infant vaccinations. The safety profile of the CH505TF + GLA-SE vaccine was reassuring.</p><p><strong>Trial registration: </strong></p><p><strong>Clinicaltrials: </strong>gov NCT04607408.</p><p><strong>Funding: </strong>The trial was funded through National Institute of Allergy and Infectious Disease of the National Institutes of Health under grants UM1 AI068614 (HVTN Leadership and Operations Center), UM1 AI068635 (HVTN Statistical and Data Management Center), and UM1 AI068618 (HVTN Laboratory Center).</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna S Pollack, Christian A Kunder, Chandler C Ho, Josephine Chou, Andrew J Pollack, Rachel L P Geisick, Bing M Zhang, Robert B West, James D Brooks, Jonathan R Pollack
{"title":"Immune repertoire profiling uncovers pervasive T-cell clonal expansions in benign prostatic hyperplasia.","authors":"Anna S Pollack, Christian A Kunder, Chandler C Ho, Josephine Chou, Andrew J Pollack, Rachel L P Geisick, Bing M Zhang, Robert B West, James D Brooks, Jonathan R Pollack","doi":"10.1172/JCI186939","DOIUrl":"https://doi.org/10.1172/JCI186939","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting lactylation and the STAT3/CCL2 axis to overcome immunotherapy resistance in pancreatic ductal adenocarcinoma.","authors":"Qun Chen, Hao Yuan, Michael S Bronze, Min Li","doi":"10.1172/JCI191422","DOIUrl":"10.1172/JCI191422","url":null,"abstract":"<p><p>Metabolic reprogramming in pancreatic ductal adenocarcinoma (PDAC) fosters an immunosuppressive tumor microenvironment (TME) characterized by elevated lactate levels, which contribute to immune evasion and therapeutic resistance. In this issue of the JCI, Sun, Zhang, and colleagues identified nonhistone ENSA-K63 lactylation as a critical regulator that inactivates PP2A, activates STAT3/CCL2 signaling, recruits tumor-associated macrophages (TAMs), and suppresses cytotoxic T cell activity. Targeting ENSA-K63 lactylation or CCL2/CCR2 signaling reprograms the TME and enhances the efficacy of immune checkpoint blockade (ICB) in PDAC preclinical models. This work provides critical insights into the metabolic-immune crosstalk in PDAC and highlights promising therapeutic strategies for overcoming immune resistance and improving patient outcomes.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ACAT1 regulates tertiary lymphoid structures and correlates with immunotherapy response in non-small cell lung cancer.","authors":"Mengxia Jiao, Yifan Guo, Hongyu Zhang, Haoyu Wen, Peng Chen, Zhiqiang Wang, Baichao Yu, Kameina Zhuma, Yuchen Zhang, Jingbo Qie, Yun Xing, Pengyuan Zhao, Zihe Pan, Luman Wang, Dan Zhang, Fei Li, Yijiu Ren, Chang Chen, Yiwei Chu, Jie Gu, Ronghua Liu","doi":"10.1172/JCI181517","DOIUrl":"10.1172/JCI181517","url":null,"abstract":"<p><p>Tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) are emerging solid-tumor indicators of prognosis and response to immunotherapy. Considering that tumorigenesis requires metabolic reprogramming and subsequent TME remodeling, the discovery of TLS metabolic regulators is expected to produce immunotherapeutic targets. To identify such metabolic regulators, we constructed a metabolism-focused sgRNA library and performed an in vivo CRISPR screening in an orthotopic lung tumor mouse model. Combined with The Cancer Genome Atlas database analysis of TLS-related metabolic hub genes, we found that the loss of Acat1 in tumor cells sensitized tumors to anti-PD1 treatment, accompanied by increased TLS in the TME. Mechanistic studies revealed that ACAT1 resulted in mitochondrial protein hypersuccinylation in lung tumor cells and subsequently enhanced mitochondrial oxidative metabolism, which impeded TLS formation. Elimination of ROS by NAC or Acat1 knockdown promoted B cell aggregation and TLS construction. Consistently, data from tissue microassays of 305 patients with lung cancer showed that TLS were more abundant in non-small cell lung cancer (NSCLC) tissues with lower ACAT1 expression. Intratumoral ACAT1 expression was associated with poor immunotherapy outcomes in patients with NSCLC. In conclusion, our results identified ACAT1 as a metabolic regulator of TLS and a promising immunotherapeutic target in NSCLC.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ending one conversation, starting another.","authors":"Ushma S Neill","doi":"10.1172/JCI193004","DOIUrl":"10.1172/JCI193004","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shike Wang, Houfu Guo, Reo Fukushima, Masahiko Terajima, Min Liu, Guan-Yu Xiao, Lenka Koudelková, Chao Wu, Xin Liu, Jiang Yu, Emma Burris, Jun Xu, Alvise Schiavinato, William K Russell, Mitsuo Yamauchi, Xiaochao Tan, Jonathan M Kurie
{"title":"Lysyl hydroxylase 2 glucosylates collagen VI to drive lung cancer progression.","authors":"Shike Wang, Houfu Guo, Reo Fukushima, Masahiko Terajima, Min Liu, Guan-Yu Xiao, Lenka Koudelková, Chao Wu, Xin Liu, Jiang Yu, Emma Burris, Jun Xu, Alvise Schiavinato, William K Russell, Mitsuo Yamauchi, Xiaochao Tan, Jonathan M Kurie","doi":"10.1172/JCI189197","DOIUrl":"10.1172/JCI189197","url":null,"abstract":"<p><p>Lysyl hydroxylase 2 (LH2) is highly expressed in multiple tumor types and accelerates disease progression by hydroxylating lysine residues on fibrillar collagen telopeptides to generate stable collagen cross links in tumor stroma. Here, we show that a galactosylhydroxylysyl glucosyltransferase (GGT) domain on LH2-modified type-VI collagen (Col6) to promote lung adenocarcinoma (LUAD) growth and metastasis. In tumors generated by LUAD cells lacking LH2 GGT domain activity, stroma was less stiff, and stable types of collagen cross links were reduced. Mass spectrometric analysis of total and glycosylated peptides in parental and GGT-inactive tumor samples identified Col6 chain α3 (Col6a3), a component of the Col6 heterotrimeric molecule, as a candidate LH2 substrate. In gain- and loss-of-function studies, high Col6a3 levels increased tumor growth and metastatic activity and enhanced the proliferative, migratory, and invasive activities of LUAD cells. LH2 coimmunoprecipitated with Col6a3, and LH2 glucosylated Col6 in an in vitro reaction. Glucosylation increased the integrin-binding and promigratory activities of Col6 in LUAD cells. Col6a3 K2049 was deglucosylated in GGT-inactive tumor samples, and mutagenesis of Col6a3 K2049 phenocopied Col6a3 deficiency or LH2 GGT domain inactivation in LUAD cells. Thus, LH2 glucosylates Col6 to drive LUAD progression. These findings show that the GGT domain of LH2 is protumorigenic, identify Col6 as a candidate effector, and provide a rationale to develop pharmacological strategies that target LH2's GGT domain in cancer cells.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fat, fibrosis, and the future: navigating the maze of MASLD/MASH.","authors":"Scott L Friedman","doi":"10.1172/JCI186418","DOIUrl":"10.1172/JCI186418","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Sun, Ruixue Leng, Monan Liu, Meiming Su, Qingze He, Zhidan Zhang, Zhenghong Liu, Zhihua Wang, Hui Jiang, Li Wang, Shuai Guo, Yiming Xu, Yuqing Huo, Clint L Miller, Maciej Banach, Yu Huang, Paul C Evans, Jaroslav Pelisek, Giovanni G Camici, Bradford C Berk, Stefan Offermanns, Junbo Ge, Suowen Xu, Jianping Weng
{"title":"Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake.","authors":"Lu Sun, Ruixue Leng, Monan Liu, Meiming Su, Qingze He, Zhidan Zhang, Zhenghong Liu, Zhihua Wang, Hui Jiang, Li Wang, Shuai Guo, Yiming Xu, Yuqing Huo, Clint L Miller, Maciej Banach, Yu Huang, Paul C Evans, Jaroslav Pelisek, Giovanni G Camici, Bradford C Berk, Stefan Offermanns, Junbo Ge, Suowen Xu, Jianping Weng","doi":"10.1172/JCI181928","DOIUrl":"10.1172/JCI181928","url":null,"abstract":"<p><p>Mitochondrial dysfunction fuels vascular inflammation and atherosclerosis. Mitochondrial calcium uptake 1 (MICU1) maintains mitochondrial Ca2+ homeostasis. However, the role of MICU1 in vascular inflammation and atherosclerosis remains unknown. Here, we report that endothelial MICU1 prevents vascular inflammation and atherosclerosis by maintaining mitochondrial homeostasis. We observed that vascular inflammation was aggravated in endothelial cell-specific Micu1 knockout mice (Micu1ECKO) and attenuated in endothelial cell-specific Micu1 transgenic mice (Micu1ECTg). Furthermore, hypercholesterolemic Micu1ECKO mice also showed accelerated development of atherosclerosis, while Micu1ECTg mice were protected against atherosclerosis. Mechanistically, MICU1 depletion increased mitochondrial Ca2+ influx, thereby decreasing the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and the ensuing deacetylation of superoxide dismutase 2 (SOD2), leading to the burst of mitochondrial reactive oxygen species (mROS). Of clinical relevance, we observed decreased MICU1 expression in the endothelial layer covering human atherosclerotic plaques and in human aortic endothelial cells exposed to serum from patients with coronary artery diseases (CAD). Two-sample Wald ratio Mendelian randomization further revealed that increased expression of MICU1 was associated with decreased risk of CAD and coronary artery bypass grafting (CABG). Our findings support MICU1 as an endogenous endothelial resilience factor that protects against vascular inflammation and atherosclerosis by maintaining mitochondrial Ca2+ homeostasis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}