E3泛素连接酶Cul5调节小鼠稳态造血干细胞功能。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Siera A Tomishima, Dale D Kim, Nadia Porter, Ipsita Guha, Asif A Dar, Yohaniz Ortega-Burgos, Jennifer Roof, Hossein Fazelinia, Lynn A Spruce, Christopher S Thom, Robert L Bowman, Paula M Oliver
{"title":"E3泛素连接酶Cul5调节小鼠稳态造血干细胞功能。","authors":"Siera A Tomishima, Dale D Kim, Nadia Porter, Ipsita Guha, Asif A Dar, Yohaniz Ortega-Burgos, Jennifer Roof, Hossein Fazelinia, Lynn A Spruce, Christopher S Thom, Robert L Bowman, Paula M Oliver","doi":"10.1172/JCI180913","DOIUrl":null,"url":null,"abstract":"<p><p>The balance of hematopoietic stem cell (HSC) self-renewal versus differentiation is essential to ensure long-term repopulation capacity while allowing response to events that require increased hematopoietic output. Proliferation and differentiation of HSCs and their progeny is controlled by the JAK/STAT pathway downstream of cytokine signaling. E3 ubiquitin ligases, like Cullin 5 (Cul5), can regulate JAK/STAT signaling by degrading signaling intermediates. Here we report that mice lacking Cul5 in hematopoietic cells (Cul5Vav-Cre) have increased numbers of HSPCs, splenomegaly, and extramedullary hematopoiesis. Differentiation in Cul5Vav-Cre mice is myeloid- and megakaryocyte-biased, resulting in leukocytosis, anemia and thrombocytosis. Cul5Vav-Cre mice increased HSC proliferation and circulation, associated with a decrease in CXCR4 surface expression. In bone marrow cells, we identified LRRC41 co-immunoprecipitated with CUL5, and vice versa, supporting that CRL5 forms a complex with LRRC41. We identified an accumulation of LRRC41 and STAT5 in Cul5Vav-Cre HSCs during IL-3 stimulation, supporting their regulation by Cul5. Whole cell proteome (WCP) analysis of HSPCs from Cul5Vav-Cre bone marrow identified upregulation of many STAT5 target genes and associated pathways. Finally, JAK1/2 inhibition with ruxolitinib normalized hematopoiesis in Cul5Vav-Cre mice. These studies demonstrate the function of Cul5 in HSC function, stem cell fate decisions, and regulation of IL-3 signaling.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The E3 ubiquitin ligase Cul5 regulates hematopoietic stem cell function for steady-state hematopoiesis in mice.\",\"authors\":\"Siera A Tomishima, Dale D Kim, Nadia Porter, Ipsita Guha, Asif A Dar, Yohaniz Ortega-Burgos, Jennifer Roof, Hossein Fazelinia, Lynn A Spruce, Christopher S Thom, Robert L Bowman, Paula M Oliver\",\"doi\":\"10.1172/JCI180913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The balance of hematopoietic stem cell (HSC) self-renewal versus differentiation is essential to ensure long-term repopulation capacity while allowing response to events that require increased hematopoietic output. Proliferation and differentiation of HSCs and their progeny is controlled by the JAK/STAT pathway downstream of cytokine signaling. E3 ubiquitin ligases, like Cullin 5 (Cul5), can regulate JAK/STAT signaling by degrading signaling intermediates. Here we report that mice lacking Cul5 in hematopoietic cells (Cul5Vav-Cre) have increased numbers of HSPCs, splenomegaly, and extramedullary hematopoiesis. Differentiation in Cul5Vav-Cre mice is myeloid- and megakaryocyte-biased, resulting in leukocytosis, anemia and thrombocytosis. Cul5Vav-Cre mice increased HSC proliferation and circulation, associated with a decrease in CXCR4 surface expression. In bone marrow cells, we identified LRRC41 co-immunoprecipitated with CUL5, and vice versa, supporting that CRL5 forms a complex with LRRC41. We identified an accumulation of LRRC41 and STAT5 in Cul5Vav-Cre HSCs during IL-3 stimulation, supporting their regulation by Cul5. Whole cell proteome (WCP) analysis of HSPCs from Cul5Vav-Cre bone marrow identified upregulation of many STAT5 target genes and associated pathways. Finally, JAK1/2 inhibition with ruxolitinib normalized hematopoiesis in Cul5Vav-Cre mice. These studies demonstrate the function of Cul5 in HSC function, stem cell fate decisions, and regulation of IL-3 signaling.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI180913\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI180913","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

造血干细胞(HSC)自我更新与分化之间的平衡对于确保长期再生能力至关重要,同时允许对需要增加造血输出的事件做出反应。造血干细胞及其后代的增殖分化受细胞因子信号下游的JAK/STAT通路控制。E3泛素连接酶,如Cullin 5 (Cul5),可以通过降解信号中间体调节JAK/STAT信号。在这里,我们报告了造血细胞(Cul5Vav-Cre)中缺乏Cul5的小鼠,HSPCs的数量增加,脾肿大和髓外造血。Cul5Vav-Cre小鼠的分化倾向于骨髓和巨核细胞,导致白细胞增多、贫血和血小板增多。Cul5Vav-Cre小鼠增加HSC增殖和循环,与CXCR4表面表达降低有关。在骨髓细胞中,我们发现LRRC41与CUL5共免疫沉淀,反之亦然,支持CRL5与LRRC41形成复合物。我们发现在IL-3刺激期间Cul5Vav-Cre hsc中LRRC41和STAT5的积累,支持Cul5对它们的调节。Cul5Vav-Cre骨髓HSPCs的全细胞蛋白质组(WCP)分析发现,许多STAT5靶基因和相关途径上调。最后,ruxolitinib对Cul5Vav-Cre小鼠正常造血的JAK1/2抑制作用。这些研究证明了Cul5在造血干细胞功能、干细胞命运决定和IL-3信号传导调节中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The E3 ubiquitin ligase Cul5 regulates hematopoietic stem cell function for steady-state hematopoiesis in mice.

The balance of hematopoietic stem cell (HSC) self-renewal versus differentiation is essential to ensure long-term repopulation capacity while allowing response to events that require increased hematopoietic output. Proliferation and differentiation of HSCs and their progeny is controlled by the JAK/STAT pathway downstream of cytokine signaling. E3 ubiquitin ligases, like Cullin 5 (Cul5), can regulate JAK/STAT signaling by degrading signaling intermediates. Here we report that mice lacking Cul5 in hematopoietic cells (Cul5Vav-Cre) have increased numbers of HSPCs, splenomegaly, and extramedullary hematopoiesis. Differentiation in Cul5Vav-Cre mice is myeloid- and megakaryocyte-biased, resulting in leukocytosis, anemia and thrombocytosis. Cul5Vav-Cre mice increased HSC proliferation and circulation, associated with a decrease in CXCR4 surface expression. In bone marrow cells, we identified LRRC41 co-immunoprecipitated with CUL5, and vice versa, supporting that CRL5 forms a complex with LRRC41. We identified an accumulation of LRRC41 and STAT5 in Cul5Vav-Cre HSCs during IL-3 stimulation, supporting their regulation by Cul5. Whole cell proteome (WCP) analysis of HSPCs from Cul5Vav-Cre bone marrow identified upregulation of many STAT5 target genes and associated pathways. Finally, JAK1/2 inhibition with ruxolitinib normalized hematopoiesis in Cul5Vav-Cre mice. These studies demonstrate the function of Cul5 in HSC function, stem cell fate decisions, and regulation of IL-3 signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信