Journal of Clinical Investigation最新文献

筛选
英文 中文
Elexacaftor/tezacaftor/ivacaftor's effects on cystic fibrosis infections are maintained but not increased after 3.5-years of treatment. Elexacaftor/tezacaftor/ivacaftor对囊性纤维化感染的疗效在治疗3.5年后保持不变,但没有增加。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-05 DOI: 10.1172/JCI184171
Sarah J Morgan, Ellis Coulter, Hannah L Betts, George M Solomon, John P Clancy, Steven M Rowe, David P Nichols, Pradeep K Singh
{"title":"Elexacaftor/tezacaftor/ivacaftor's effects on cystic fibrosis infections are maintained but not increased after 3.5-years of treatment.","authors":"Sarah J Morgan, Ellis Coulter, Hannah L Betts, George M Solomon, John P Clancy, Steven M Rowe, David P Nichols, Pradeep K Singh","doi":"10.1172/JCI184171","DOIUrl":"https://doi.org/10.1172/JCI184171","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recruitment of CXCR4+ type 1 innate lymphoid cells distinguishes sarcoidosis from other skin granulomatous diseases. CXCR4+ 1 型先天性淋巴细胞的募集使肉样瘤病与其他皮肤肉芽肿疾病区分开来。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI178711
Satish Sati, Jianhe Huang, Anna E Kersh, Parker Jones, Olivia Ahart, Christina Murphy, Stephen M Prouty, Matthew L Hedberg, Vaibhav Jain, Simon G Gregory, Denis H Leung, John T Seykora, Misha Rosenbach, Thomas H Leung
{"title":"Recruitment of CXCR4+ type 1 innate lymphoid cells distinguishes sarcoidosis from other skin granulomatous diseases.","authors":"Satish Sati, Jianhe Huang, Anna E Kersh, Parker Jones, Olivia Ahart, Christina Murphy, Stephen M Prouty, Matthew L Hedberg, Vaibhav Jain, Simon G Gregory, Denis H Leung, John T Seykora, Misha Rosenbach, Thomas H Leung","doi":"10.1172/JCI178711","DOIUrl":"10.1172/JCI178711","url":null,"abstract":"<p><p>Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer therapy-related salivary dysfunction. 癌症治疗相关的唾液功能障碍。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI182661
Cristina Paz, Annemarie Glassey, Abigail Frick, Sarah Sattar, Nicholas G Zaorsky, Grace C Blitzer, Randall J Kimple
{"title":"Cancer therapy-related salivary dysfunction.","authors":"Cristina Paz, Annemarie Glassey, Abigail Frick, Sarah Sattar, Nicholas G Zaorsky, Grace C Blitzer, Randall J Kimple","doi":"10.1172/JCI182661","DOIUrl":"10.1172/JCI182661","url":null,"abstract":"<p><p>Salivary gland dysfunction is a common side effect of cancer treatments. Salivary function plays key roles in critical daily activities. Consequently, changes in salivary function can profoundly impair quality of life for cancer patients. We discuss salivary gland anatomy and physiology to understand how anticancer therapies such as chemotherapy, bone marrow transplantation, immunotherapy, and radiation therapy impair salivary function. We discuss approaches to quantify xerostomia in the clinic, including the advantages and limitations of validated quality-of-life instruments and approaches to directly measuring salivary function. Current and emerging approaches to treat cancer therapy-induced dry mouth are presented using radiation-induced salivary dysfunction as a model. Limitations of current sialagogues and salivary analogues are presented. Emerging approaches, including cellular and gene therapy and novel pharmacologic approaches, are described.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type 1 innate lymphoid cells: a biomarker and therapeutic candidate in sarcoidosis. 1型先天性淋巴细胞:肉样瘤病的生物标志物和候选疗法。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI183708
Inchul Cho, Andrew L Ji
{"title":"Type 1 innate lymphoid cells: a biomarker and therapeutic candidate in sarcoidosis.","authors":"Inchul Cho, Andrew L Ji","doi":"10.1172/JCI183708","DOIUrl":"10.1172/JCI183708","url":null,"abstract":"<p><p>Sarcoidosis is an inflammatory disease characterized by immune cell-rich granulomas that form in multiple organs. In this issue of the JCI, Sati and colleagues used scRNA-seq and spatial transcriptomics of skin samples from patients with sarcoidosis and non-sarcoidosis granulomatous disease to identify upregulation of a stromal-immune CXCL12/CXCR4 axis and accumulation of type 1 innate lymphoid cells (ILC1s) in sarcoidosis. The accumulation of ILC1s in skin and blood was specific to patients with sarcoidosis and not observed in other granulomatous diseases. The authors used a mouse model of lung granuloma to show that ILCs contribute to granuloma formation and that blockade of CXCR4 reduced the formation of granulomas, providing a proof of concept that sarcoidosis may be treated by CXCR4 blockade to prevent the progression of disease in patients. These results suggest ILC1s could serve as a diagnostic biomarker in sarcoidosis and a potential therapeutic target.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. 在实体瘤模型中,药理 LDH 抑制可重定向瘤内葡萄糖摄取并提高抗肿瘤免疫力。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI177606
Svena Verma, Sadna Budhu, Inna Serganova, Lauren Dong, Levi M Mangarin, Jonathan F Khan, Mamadou A Bah, Anais Assouvie, Yacine Marouf, Isabell Schulze, Roberta Zappasodi, Jedd D Wolchok, Taha Merghoub
{"title":"Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models.","authors":"Svena Verma, Sadna Budhu, Inna Serganova, Lauren Dong, Levi M Mangarin, Jonathan F Khan, Mamadou A Bah, Anais Assouvie, Yacine Marouf, Isabell Schulze, Roberta Zappasodi, Jedd D Wolchok, Taha Merghoub","doi":"10.1172/JCI177606","DOIUrl":"10.1172/JCI177606","url":null,"abstract":"<p><p>Tumor reliance on glycolysis is a hallmark of cancer. Immunotherapy is more effective in controlling glycolysis-low tumors lacking lactate dehydrogenase (LDH) due to reduced tumor lactate efflux and enhanced glucose availability within the tumor microenvironment (TME). LDH inhibitors (LDHi) reduce glucose uptake and tumor growth in preclinical models, but their impact on tumor-infiltrating T cells is not fully elucidated. Tumor cells have higher basal LDH expression and glycolysis levels compared with infiltrating T cells, creating a therapeutic opportunity for tumor-specific targeting of glycolysis. We demonstrate that LDHi treatment (a) decreases tumor cell glucose uptake, expression of the glucose transporter GLUT1, and tumor cell proliferation while (b) increasing glucose uptake, GLUT1 expression, and proliferation of tumor-infiltrating T cells. Accordingly, increasing glucose availability in the microenvironment via LDH inhibition leads to improved tumor-killing T cell function and impaired Treg immunosuppressive activity in vitro. Moreover, combining LDH inhibition with immune checkpoint blockade therapy effectively controls murine melanoma and colon cancer progression by promoting effector T cell infiltration and activation while destabilizing Tregs. Our results establish LDH inhibition as an effective strategy for rebalancing glucose availability for T cells within the TME, which can enhance T cell function and antitumor immunity.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic lipopolysaccharide binding protein partially uncouples inflammation from fibrosis in MAFLD. 肝脂多糖结合蛋白部分解除了 MAFLD 中炎症与纤维化之间的联系。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI179752
Dan Wang, Ania Baghoomian, Zhengyi Zhang, Ya Cui, Emily C Whang, Xiang Li, Josue Fraga, Rachel Ariana Spellman, Tien S Dong, Wei Li, Arpana Gupta, Jihane N Benhammou, Tamer Sallam
{"title":"Hepatic lipopolysaccharide binding protein partially uncouples inflammation from fibrosis in MAFLD.","authors":"Dan Wang, Ania Baghoomian, Zhengyi Zhang, Ya Cui, Emily C Whang, Xiang Li, Josue Fraga, Rachel Ariana Spellman, Tien S Dong, Wei Li, Arpana Gupta, Jihane N Benhammou, Tamer Sallam","doi":"10.1172/JCI179752","DOIUrl":"10.1172/JCI179752","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. 乳腺癌转移的单细胞分析揭示了与不良预后相关的上皮-间质可塑性特征。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI164227
Juliane Winkler, Weilun Tan, Catherine Mm Diadhiou, Christopher S McGinnis, Aamna Abbasi, Saad Hasnain, Sophia Durney, Elena Atamaniuc, Daphne Superville, Leena Awni, Joyce V Lee, Johanna H Hinrichs, Patrick S Wagner, Namrata Singh, Marco Y Hein, Michael Borja, Angela M Detweiler, Su-Yang Liu, Ankitha Nanjaraj, Vaishnavi Sitarama, Hope S Rugo, Norma Neff, Zev J Gartner, Angela Oliveira Pisco, Andrei Goga, Spyros Darmanis, Zena Werb
{"title":"Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes.","authors":"Juliane Winkler, Weilun Tan, Catherine Mm Diadhiou, Christopher S McGinnis, Aamna Abbasi, Saad Hasnain, Sophia Durney, Elena Atamaniuc, Daphne Superville, Leena Awni, Joyce V Lee, Johanna H Hinrichs, Patrick S Wagner, Namrata Singh, Marco Y Hein, Michael Borja, Angela M Detweiler, Su-Yang Liu, Ankitha Nanjaraj, Vaishnavi Sitarama, Hope S Rugo, Norma Neff, Zev J Gartner, Angela Oliveira Pisco, Andrei Goga, Spyros Darmanis, Zena Werb","doi":"10.1172/JCI164227","DOIUrl":"10.1172/JCI164227","url":null,"abstract":"<p><p>Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Itm2a expression marks periosteal skeletal stem cells that contribute to bone fracture healing. Itm2a的表达标志着有助于骨折愈合的骨膜骨骼干细胞。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI176528
Wenhui Xing, Heng Feng, Bo Jiang, Bo Gao, Jiping Liu, Zaiqi Xie, Yazhuo Zhang, Xuye Hu, Jun Sun, Matthew B Greenblatt, Bo O Zhou, Weiguo Zou
{"title":"Itm2a expression marks periosteal skeletal stem cells that contribute to bone fracture healing.","authors":"Wenhui Xing, Heng Feng, Bo Jiang, Bo Gao, Jiping Liu, Zaiqi Xie, Yazhuo Zhang, Xuye Hu, Jun Sun, Matthew B Greenblatt, Bo O Zhou, Weiguo Zou","doi":"10.1172/JCI176528","DOIUrl":"10.1172/JCI176528","url":null,"abstract":"<p><p>The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic benefits afforded by estradiol and testosterone in both sexes: clinical considerations. 雌二醇和睾酮对两性代谢的益处:临床考虑。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI180073
Franck Mauvais-Jarvis, Sarah H Lindsey
{"title":"Metabolic benefits afforded by estradiol and testosterone in both sexes: clinical considerations.","authors":"Franck Mauvais-Jarvis, Sarah H Lindsey","doi":"10.1172/JCI180073","DOIUrl":"10.1172/JCI180073","url":null,"abstract":"<p><p>Testosterone (T) and 17β-estradiol (E2) are produced in male and female humans and are potent metabolic regulators in both sexes. When E2 and T production stops or decreases during aging, metabolic dysfunction develops and promotes degenerative metabolic and vascular disease. Here, we discuss the shared benefits afforded by E2 and T for metabolic function human females and males. In females, E2 is central to bone and vascular health, subcutaneous adipose tissue distribution, skeletal muscle insulin sensitivity, antiinflammatory immune function, and mitochondrial health. However, T also plays a role in female skeletal, vascular, and metabolic health. In males, T's conversion to E2 is fundamental to bone and vascular health, as well as prevention of excess visceral adiposity and the promotion of insulin sensitivity via activation of the estrogen receptors. However, T and its metabolite dihydrotestosterone also prevent excess visceral adiposity and promote skeletal muscle growth and insulin sensitivity via activation of the androgen receptor. In conclusion, T and E2 are produced in both sexes at sex-specific concentrations and provide similar and potent metabolic benefits. Optimizing levels of both hormones may be beneficial to protect patients from cardiometabolic disease and frailty during aging, which requires further study.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. 侧隔膜中的 GLP-1R 阳性神经元介导了利拉鲁肽对小鼠厌食和降低体重的作用。
IF 13.3 1区 医学
Journal of Clinical Investigation Pub Date : 2024-09-03 DOI: 10.1172/JCI178239
Zijun Chen, Xiaofei Deng, Cuijie Shi, Haiyang Jing, Yu Tian, Jiafeng Zhong, Gaowei Chen, Yunlong Xu, Yixiao Luo, Yingjie Zhu
{"title":"GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice.","authors":"Zijun Chen, Xiaofei Deng, Cuijie Shi, Haiyang Jing, Yu Tian, Jiafeng Zhong, Gaowei Chen, Yunlong Xu, Yixiao Luo, Yingjie Zhu","doi":"10.1172/JCI178239","DOIUrl":"10.1172/JCI178239","url":null,"abstract":"<p><p>Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信