Matthew S Karafin, Abby L Grier, Ross M Fasano, Anton Ilich, David Wichlan, Ada Chang, Sonjile M James, Hailly E Butler, Oleg Kolupaev, Melissa C Caughey, Daniel J Stephenson, Julie A Reisz, Nigel S Key, Joshua J Field, Jane A Little, Steven L Spitalnik, Angelo D'Alessandro
{"title":"Blood-storage duration affects hematological and metabolic profiles in patients with sickle cell disease receiving transfusions.","authors":"Matthew S Karafin, Abby L Grier, Ross M Fasano, Anton Ilich, David Wichlan, Ada Chang, Sonjile M James, Hailly E Butler, Oleg Kolupaev, Melissa C Caughey, Daniel J Stephenson, Julie A Reisz, Nigel S Key, Joshua J Field, Jane A Little, Steven L Spitalnik, Angelo D'Alessandro","doi":"10.1172/JCI192920","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with sickle cell disease (SCD) frequently receive red blood cell (RBC) units stored near the end of their permissible storage life. To evaluate whether storage duration influences recipient metabolism, clinical chemistry and hematological parameters, we conducted a prospective, randomized, blinded trial comparing transfusions of RBC units stored for ≤10 days versus ≥30 days. Chronically transfused adults with SCD (N=24) received three consecutive outpatient transfusions with randomized-age RBCs, and blood samples from units and recipients were analyzed by metabolomics and clinical chemistry. Transfusion of short-stored units resulted in significantly higher circulating levels of 2,3-bisphosphoglycerate, an essential regulator of oxygen unloading, up to two weeks post-transfusion. Conversely, transfusions of long-stored RBCs were associated with lower hemoglobin and RBC increments, higher iron and transferrin saturation, pro-inflammatory cytokines and metabolites, oxidative stress and markers of renal dysfunction. Plasma and RBC metabolomic profiles revealed time- and storage-age-dependent alterations, particularly affecting glycolysis, purine, and sphingolipid metabolism. Transfusion of long-stored RBCs consistently worsened laboratory surrogates of oxygen delivery and RBC efficacy, and increased the circulating levels of immunomodulatory metabolites and pro-inflammatory cytokines. These findings highlight metabolic and hematologic advantages associated with transfusing fresher RBCs in adults with SCD, independent of immediate clinical outcomes.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI192920","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with sickle cell disease (SCD) frequently receive red blood cell (RBC) units stored near the end of their permissible storage life. To evaluate whether storage duration influences recipient metabolism, clinical chemistry and hematological parameters, we conducted a prospective, randomized, blinded trial comparing transfusions of RBC units stored for ≤10 days versus ≥30 days. Chronically transfused adults with SCD (N=24) received three consecutive outpatient transfusions with randomized-age RBCs, and blood samples from units and recipients were analyzed by metabolomics and clinical chemistry. Transfusion of short-stored units resulted in significantly higher circulating levels of 2,3-bisphosphoglycerate, an essential regulator of oxygen unloading, up to two weeks post-transfusion. Conversely, transfusions of long-stored RBCs were associated with lower hemoglobin and RBC increments, higher iron and transferrin saturation, pro-inflammatory cytokines and metabolites, oxidative stress and markers of renal dysfunction. Plasma and RBC metabolomic profiles revealed time- and storage-age-dependent alterations, particularly affecting glycolysis, purine, and sphingolipid metabolism. Transfusion of long-stored RBCs consistently worsened laboratory surrogates of oxygen delivery and RBC efficacy, and increased the circulating levels of immunomodulatory metabolites and pro-inflammatory cytokines. These findings highlight metabolic and hematologic advantages associated with transfusing fresher RBCs in adults with SCD, independent of immediate clinical outcomes.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.