Journal of Cerebral Blood Flow and Metabolism最新文献

筛选
英文 中文
Comparative analysis of peri-nidal cerebral blood flow and metabolism using a novel quantitative 15O-PET method in patients with arteriovenous malformations. 使用新型定量 15O-PET 方法对动静脉畸形患者潮周脑血流和新陈代谢进行比较分析。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-11 DOI: 10.1177/0271678X241270416
Daisuke Maruyama, Hidehiro Iida, Kazuhiro Koshino, Jyoji Nakagawara, Yoshiaki Morita, Naoki Hashimura, Hisae Mori, Tetsu Satow, Jun C Takahashi, Tetsuya Fukuda, Koji Iihara, Hiroharu Kataoka
{"title":"Comparative analysis of peri-nidal cerebral blood flow and metabolism using a novel quantitative <sup>15</sup>O-PET method in patients with arteriovenous malformations.","authors":"Daisuke Maruyama, Hidehiro Iida, Kazuhiro Koshino, Jyoji Nakagawara, Yoshiaki Morita, Naoki Hashimura, Hisae Mori, Tetsu Satow, Jun C Takahashi, Tetsuya Fukuda, Koji Iihara, Hiroharu Kataoka","doi":"10.1177/0271678X241270416","DOIUrl":"10.1177/0271678X241270416","url":null,"abstract":"<p><p>To effectively treat cerebral arteriovenous malformations (AVMs), peri-nidal flow regulation and metabolic status must be understood. In this study, we used <sup>15</sup>O-oxygen positron emission tomography (PET) post-processing analysis to investigate vascular radioactivity in the nidal region of AVMs. Single-dynamic PET imaging was performed on seven unruptured AVM patients during the sequential inhalation of <sup>15</sup>O<sub>2</sub> and C<sup>15</sup>O<sub>2</sub>. A previously validated dual-tracer basis function method (DBFM) was employed to calculate parametric images. The results of our study were as follows. First, in remote and contralateral AVM regions, DBFM and a previous approach of dual-tracer autoradiography (DARG) showed strong positive correlations in cerebral blood flow (<b><i>CBF</i></b>), cerebral oxygen metabolism rate (<b><i>CMRO<sub>2</sub></i></b>), and oxygen extraction fraction. Second, peri-nidal <b><i>CBF</i></b> and <b><i>CMRO<sub>2</sub></i></b> correlation was lower, and overestimation occurred with DARG compared to with DBFM. Third, on comparing DBFM to quantitative <sup>123</sup>I-iodoamphetamine single-photon emission computed tomography (SPECT), <b><i>CBF</i></b> correlated significantly. In contrast, the correlation between DARG and quantitative <sup>123</sup>I-iodoamphetamine-SPECT was weaker in the peri-nidal regions. Fourth, analysis of tissue time-activity curves demonstrated good reproducibility using the novel formulation in the control, peri-nidus, and core nidal regions, indicating the adequacy of this approach. Overall, the DBFM approach holds promise for assessing haemodynamic alterations in patients with AVMs.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"259-274"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild hypothermia therapy attenuates early BBB leakage in acute ischemic stroke. 轻度低温疗法可减轻急性缺血性中风的早期 BBB 渗漏。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-19 DOI: 10.1177/0271678X241275761
Yi Xu, Yunxia Duan, Shuaili Xu, Xiaoduo He, Jiaqi Guo, Jingfei Shi, Yang Zhang, Milan Jia, Ming Li, Chuanjie Wu, Longfei Wu, Miaowen Jiang, Xiaonong Chen, Xunming Ji, Di Wu
{"title":"Mild hypothermia therapy attenuates early BBB leakage in acute ischemic stroke.","authors":"Yi Xu, Yunxia Duan, Shuaili Xu, Xiaoduo He, Jiaqi Guo, Jingfei Shi, Yang Zhang, Milan Jia, Ming Li, Chuanjie Wu, Longfei Wu, Miaowen Jiang, Xiaonong Chen, Xunming Ji, Di Wu","doi":"10.1177/0271678X241275761","DOIUrl":"10.1177/0271678X241275761","url":null,"abstract":"<p><p>Reperfusion therapy inevitably leads to brain-blood barrier (BBB) disruption and promotes damage despite its benefits for acute ischaemic stroke (AIS). An effective brain cytoprotective treatment is still needed as an adjunct to reperfusion therapy. Here, we explore the potential benefits of therapeutic hypothermia (HT) in attenuating early BBB leakage and improving neurological outcomes. Mild HT was induced during the early and peri-recanalization stages in a mouse model of transient middle cerebral artery occlusion and reperfusion (tMCAO/R). The results showed that mild HT attenuated early BBB leakage in AIS, decreased the infarction volume, and improved functional outcomes. RNA sequencing data of the microvessels indicated that HT decreased the transcription of the actin polymerization-related pathway. We further discovered that HT attenuated the ROCK1/MLC pathway, leading to a decrease in the polymerization of G-actin to F-actin. Arachidonic acid (AA), a known structural ROCK agonist, partially counteracted the protective effects of HT in the tMCAO/R model. Our study highlights the importance of early vascular protection during reperfusion and provides a new strategy for attenuating early BBB leakage by HT treatment for ischaemic stroke.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"292-305"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging affects the mouse brain in a region-specific manner. 衰老以特定区域的方式影响小鼠大脑。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-10-18 DOI: 10.1177/0271678X241289780
Ling Cai, Yueman Zhang, Yuxi Zhou, Xin Wang
{"title":"Aging affects the mouse brain in a region-specific manner.","authors":"Ling Cai, Yueman Zhang, Yuxi Zhou, Xin Wang","doi":"10.1177/0271678X241289780","DOIUrl":"10.1177/0271678X241289780","url":null,"abstract":"<p><p>Aging-related cognitive decline is emerging as a health concern during the aging process of the global population. Hahn and colleagues found that glial aging was particularly accelerated in white matter compared to cortical regions. Specialized neuronal populations showed region-specific changes in gene expression. Acute dietary restriction triggers a reprogramming of genes associated with the circadian clock in glial cells, whereas injections of young mouse plasma selectively reverse age-related expression patterns. The discovery of region-specific aging could enhance our understanding of the aging process and offer new possibilities for innovative treatment strategies and interventions for cognitive impairments related to aging.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"373-375"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia. 危险的联系脑缺血时蔓延性去极化和组织酸化。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-11-13 DOI: 10.1177/0271678X241289756
Eszter Farkas, Christine R Rose
{"title":"A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.","authors":"Eszter Farkas, Christine R Rose","doi":"10.1177/0271678X241289756","DOIUrl":"10.1177/0271678X241289756","url":null,"abstract":"<p><p>Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"201-218"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia balances hypermyelination and demyelination in the brain. 小胶质细胞平衡大脑中的髓鞘增生和脱髓鞘。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-12-12 DOI: 10.1177/0271678X241273623
Weijie Chen, Yueman Zhang, Peiying Li
{"title":"Microglia balances hypermyelination and demyelination in the brain.","authors":"Weijie Chen, Yueman Zhang, Peiying Li","doi":"10.1177/0271678X241273623","DOIUrl":"10.1177/0271678X241273623","url":null,"abstract":"<p><p>Myelin is crucial for neuron health and central nervous system (CNS) function. Recent research by McNamara <i>et al.</i> highlighted microglia's essential role in compacting the myelin sheath during development and their absence leads to aberrant oligodendrocyte clusters and subsequent cognitive impairment. The study revealed that the critical involvement of the TGFβ1-TGFβR1 axis in microglia-oligodendrocyte communication could influence the oligodendrocyte lipid metabolism and thereby regulate myelin integrity. Further exploration is needed to fully elucidate the dual impact of microglia on myelination, and interactions with other glial cells, holding promise for discovering new targets in myelin-related neurodegenerative and CNS disorders.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"376-378"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion. 单侧或双侧大脑中动脉闭塞患者脑区 M1-M6 的析氧分数变化。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1177/0271678X241276386
Yu Xiao, Zhenghua Liu, Xinghua Wan
{"title":"Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion.","authors":"Yu Xiao, Zhenghua Liu, Xinghua Wan","doi":"10.1177/0271678X241276386","DOIUrl":"10.1177/0271678X241276386","url":null,"abstract":"<p><p>Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO<sub>2</sub> in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"319-327"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs. 反思临床前研究中的动物自然减员:利用有向无环图表达选择偏差的因果机制。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1177/0271678X241275760
Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann
{"title":"Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs.","authors":"Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann","doi":"10.1177/0271678X241275760","DOIUrl":"10.1177/0271678X241275760","url":null,"abstract":"<p><p>Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"340-351"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation. 通过多模态无创功能神经监测脑氧代谢和血流动力学模型预测脑温计算成像:核磁共振成像和临床验证。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-11 DOI: 10.1177/0271678X241270485
Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji
{"title":"Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation.","authors":"Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji","doi":"10.1177/0271678X241270485","DOIUrl":"10.1177/0271678X241270485","url":null,"abstract":"<p><p>Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"275-291"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging the 5-HT2C receptor with PET: Evaluation of 5-HT2C and 5-HT2A affinity of pimavanserin in the primate brain. 用 PET 对 5-HT2C 受体进行成像:评估灵长类动物大脑中匹马伐林的 5-HT2C 和 5-HT2A 亲和力。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-21 DOI: 10.1177/0271678X241276312
Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner
{"title":"Imaging the 5-HT<sub>2C</sub> receptor with PET: Evaluation of 5-HT<sub>2C</sub> and 5-HT<sub>2A</sub> affinity of pimavanserin in the primate brain.","authors":"Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner","doi":"10.1177/0271678X241276312","DOIUrl":"10.1177/0271678X241276312","url":null,"abstract":"<p><p>Two complimentary techniques were used to estimate occupancy of pimavanserin (a selective 5-HT<sub>2A/2C</sub> inverse agonist) to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in non-human primate brains. One employed the 5-HT<sub>2A/2C</sub> selective radioligand [<sup>11</sup>C]CIMBI-36 combined with quantification of binding potentials in brain regions known to be enriched in 5-HT<sub>2A</sub> (cortex) or 5-HT<sub>2C</sub> (choroid plexus) receptors to estimate occupancy. Pimavanserin was 6-10 fold more potent displacing [<sup>11</sup>C]CIMBI-36 from cortex (ED<sub>50</sub> = 0.007 mg/kg; EC<sub>50</sub> = 0.6 ng/ml) than from choroid plexus (ED<sub>50</sub> =0.046 mg/kg; EC<sub>50</sub> = 6.0 ng/ml). The assignment of [<sup>11</sup>C]CIMBI-36 binding to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors by anatomical brain structure was confirmed using the 5-HT<sub>2A</sub> selective inverse agonist MDL 100,907 and the 5-HT<sub>2C</sub> selective antagonist SB 242584 to displace [<sup>11</sup>C]CIMBI-36. The second technique employed a novel, 5-HT<sub>2C</sub> selective tracer called [<sup>11</sup>C]AC1332. [<sup>11</sup>C]AC1332 bound robustly to choroid plexus, moderately to hippocampus, and minimally to cortex. Pimavanserin displaced [<sup>11</sup>C]AC1332 with similar potency (ED<sub>50</sub> = 0.062 mg/kg; EC<sub>50</sub> = 2.5 ng/ml) as its potency displacing [<sup>11</sup>C]CIMBI-36 binding from choroid plexus. These results demonstrate the feasibility of simultaneously estimating drug occupancy of 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in vivo, and the utility of a novel 5-HT<sub>2C</sub> receptor selective tracer ligand.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"352-364"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke. 动脉自旋标记的脑血流作为缺血性中风血管内治疗后疗效的成像生物标志物。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-10-04 DOI: 10.1177/0271678X241267066
Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann
{"title":"Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke.","authors":"Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann","doi":"10.1177/0271678X241267066","DOIUrl":"10.1177/0271678X241267066","url":null,"abstract":"<p><p>Arterial spin labeling (ASL) is a contrast agent-free magnetic resonance imaging (MRI) technique to measure cerebral blood flow (CBF). We sought to investigate effects of CBF within the infarct on outcome and risk of hemorrhagic transformation (HT). In 111 patients (median age: 74 years, 50 men) who had undergone mechanical thrombectomy (MT) for ischemic stroke of the anterior circulation (median interval: 4 days between MT and MRI), post-stroke %CBF difference from pseudo-continuous ASL was calculated within the diffusion-weighted imaging (DWI)-positive infarct territory following lesion segmentation in relationship to the unaffected contralateral side. Functional independence was defined as a modified Rankin Scale (mRS) of 0-2 at 90 days post-stroke. %CBF difference, pre-stroke mRS, and infarct volume were independently associated with functional independence in a multivariate regression model. %CBF difference was comparable between patients with and without HT. A subcohort of 10 patients with decreased infarct-CBF despite expanded Treatment in Cerebral Infarction (eTICI) 2c or 3 recanalization was identified (likely related to the no-reflow phenomenon). Outcome was significantly worse in this group compared to the remaining cohort. In conclusion, ASL-derived %CBF difference from the DWI-positive infarct territory independently predicted functional independence, but %CBF difference was not significantly associated with an increased risk of HT.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"219-232"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信