Comparative analysis of peri-nidal cerebral blood flow and metabolism using a novel quantitative 15O-PET method in patients with arteriovenous malformations.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Daisuke Maruyama, Hidehiro Iida, Kazuhiro Koshino, Jyoji Nakagawara, Yoshiaki Morita, Naoki Hashimura, Hisae Mori, Tetsu Satow, Jun C Takahashi, Tetsuya Fukuda, Koji Iihara, Hiroharu Kataoka
{"title":"Comparative analysis of peri-nidal cerebral blood flow and metabolism using a novel quantitative <sup>15</sup>O-PET method in patients with arteriovenous malformations.","authors":"Daisuke Maruyama, Hidehiro Iida, Kazuhiro Koshino, Jyoji Nakagawara, Yoshiaki Morita, Naoki Hashimura, Hisae Mori, Tetsu Satow, Jun C Takahashi, Tetsuya Fukuda, Koji Iihara, Hiroharu Kataoka","doi":"10.1177/0271678X241270416","DOIUrl":null,"url":null,"abstract":"<p><p>To effectively treat cerebral arteriovenous malformations (AVMs), peri-nidal flow regulation and metabolic status must be understood. In this study, we used <sup>15</sup>O-oxygen positron emission tomography (PET) post-processing analysis to investigate vascular radioactivity in the nidal region of AVMs. Single-dynamic PET imaging was performed on seven unruptured AVM patients during the sequential inhalation of <sup>15</sup>O<sub>2</sub> and C<sup>15</sup>O<sub>2</sub>. A previously validated dual-tracer basis function method (DBFM) was employed to calculate parametric images. The results of our study were as follows. First, in remote and contralateral AVM regions, DBFM and a previous approach of dual-tracer autoradiography (DARG) showed strong positive correlations in cerebral blood flow (<b><i>CBF</i></b>), cerebral oxygen metabolism rate (<b><i>CMRO<sub>2</sub></i></b>), and oxygen extraction fraction. Second, peri-nidal <b><i>CBF</i></b> and <b><i>CMRO<sub>2</sub></i></b> correlation was lower, and overestimation occurred with DARG compared to with DBFM. Third, on comparing DBFM to quantitative <sup>123</sup>I-iodoamphetamine single-photon emission computed tomography (SPECT), <b><i>CBF</i></b> correlated significantly. In contrast, the correlation between DARG and quantitative <sup>123</sup>I-iodoamphetamine-SPECT was weaker in the peri-nidal regions. Fourth, analysis of tissue time-activity curves demonstrated good reproducibility using the novel formulation in the control, peri-nidus, and core nidal regions, indicating the adequacy of this approach. Overall, the DBFM approach holds promise for assessing haemodynamic alterations in patients with AVMs.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241270416"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241270416","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively treat cerebral arteriovenous malformations (AVMs), peri-nidal flow regulation and metabolic status must be understood. In this study, we used 15O-oxygen positron emission tomography (PET) post-processing analysis to investigate vascular radioactivity in the nidal region of AVMs. Single-dynamic PET imaging was performed on seven unruptured AVM patients during the sequential inhalation of 15O2 and C15O2. A previously validated dual-tracer basis function method (DBFM) was employed to calculate parametric images. The results of our study were as follows. First, in remote and contralateral AVM regions, DBFM and a previous approach of dual-tracer autoradiography (DARG) showed strong positive correlations in cerebral blood flow (CBF), cerebral oxygen metabolism rate (CMRO2), and oxygen extraction fraction. Second, peri-nidal CBF and CMRO2 correlation was lower, and overestimation occurred with DARG compared to with DBFM. Third, on comparing DBFM to quantitative 123I-iodoamphetamine single-photon emission computed tomography (SPECT), CBF correlated significantly. In contrast, the correlation between DARG and quantitative 123I-iodoamphetamine-SPECT was weaker in the peri-nidal regions. Fourth, analysis of tissue time-activity curves demonstrated good reproducibility using the novel formulation in the control, peri-nidus, and core nidal regions, indicating the adequacy of this approach. Overall, the DBFM approach holds promise for assessing haemodynamic alterations in patients with AVMs.

使用新型定量 15O-PET 方法对动静脉畸形患者潮周脑血流和新陈代谢进行比较分析。
要有效治疗脑动静脉畸形(AVMs),必须了解潮间带周围的血流调节和代谢状况。在这项研究中,我们利用 15O 氧正电子发射断层扫描(PET)后处理分析来研究 AVM 潮汐区的血管放射性。在连续吸入 15O2 和 C15O2 的过程中,对七名未破裂的动静脉畸形患者进行了单动态 PET 成像。采用先前验证的双示踪剂基础函数法(DBFM)计算参数图像。我们的研究结果如下。首先,在远端和对侧 AVM 区域,DBFM 和之前的双示踪剂自显影(DARG)方法在脑血流(CBF)、脑氧代谢率(CMRO2)和氧萃取分数方面显示出很强的正相关性。第二,潮周 CBF 和 CMRO2 的相关性较低,与 DBFM 相比,DARG 出现了高估。第三,将 DBFM 与定量 123I-iodoamphetamine 单光子发射计算机断层扫描(SPECT)相比,CBF 的相关性显著提高。相比之下,DARG 与定量 123I 碘安非他明单光子发射计算机断层扫描(SPECT)之间的相关性在潮间带周围区域较弱。第四,对组织时间-活动曲线的分析表明,在对照区、巢周区和核心巢区使用新型配方具有良好的重现性,表明这种方法是适当的。总之,DBFM 方法有望用于评估动静脉畸形患者的血流动力学改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信