{"title":"VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain.","authors":"Bunta Tsukamoto, Yuuki Kurebayashi, Tadanobu Takahashi, Yusuke Abe, Ryohei Ota, Yoshiki Wakabayashi, Anju Nishiie, Akira Minami, Takashi Suzuki, Hideyuki Takeuchi","doi":"10.1093/jb/mvae051","DOIUrl":"10.1093/jb/mvae051","url":null,"abstract":"<p><p>Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O-sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored. This study investigated whether noroviruses interact with sulfatide. We found that the recombinant viral capsid protein VP1 of HuNoV (genogroups I and II) and murine norovirus (genogroup V) exhibited robust binding to sulfatide compared with other tested GSLs using enzyme-linked immunosorbent assay, thin-layer chromatography binding assay and real-time quantitative reverse transcription polymerase chain reaction binding assay. VP1 also bound 3-O-sulfated lactosylceramide, which shares the 3-O-sulfated galactose moiety with sulfatide. However, both VP1 and its P domain, identified as the sulfatide-binding domain, exhibited limited binding to structural analogues of sulfatide and other sulfated compounds. These findings suggest a specific recognition of the 3-O-sulfated galactose moiety. Notably, we found that sulfatide is a novel binding target for norovirus particles. Overall, our findings reveal a previously unknown norovirus-sulfatide interaction, proposing sulfatide as a potential candidate for norovirus infection receptors.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sequential post-translational modifications regulate damaged DNA-binding protein DDB2 function.","authors":"Hidenori Kaneoka, Kazuhiko Arakawa, Yusuke Masuda, Daiki Ogawa, Kota Sugimoto, Risako Fukata, Maasa Tsuge-Shoji, Ken-Ichi Nishijima, Shinji Iijima","doi":"10.1093/jb/mvae056","DOIUrl":"10.1093/jb/mvae056","url":null,"abstract":"<p><p>Nucleotide excision repair (NER) is a major DNA repair system and hereditary defects in this system cause critical genetic diseases (e.g. xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy). Various proteins are involved in the eukaryotic NER system and undergo several post-translational modifications. Damaged DNA-binding protein 2 (DDB2) is a DNA damage recognition factor in the NER pathway. We previously demonstrated that DDB2 was SUMOylated in response to UV irradiation; however, its physiological roles remain unclear. We herein analysed several mutants and showed that the N-terminal tail of DDB2 was the target for SUMOylation; however, this region did not contain a consensus SUMOylation sequence. We found a SUMO-interacting motif (SIM) in the N-terminal tail that facilitated SUMOylation. The ubiquitination of a SUMOylation-deficient DDB2 SIM mutant was decreased, and its retention of chromatin was prolonged. The SIM mutant showed impaired NER, possibly due to a decline in the timely handover of the lesion site to XP complementation group C. These results suggest that the SUMOylation of DDB2 facilitates NER through enhancements in ubiquitination.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intracellular biliverdin dynamics during ferroptosis.","authors":"Kazuma Nakajima, Hironari Nishizawa, Guan Chen, Shunichi Tsuge, Mie Yamanaka, Machi Kiyohara, Riko Irikura, Mitsuyo Matsumoto, Kozo Tanaka, Rei Narikawa, Kazuhiko Igarashi","doi":"10.1093/jb/mvae067","DOIUrl":"https://doi.org/10.1093/jb/mvae067","url":null,"abstract":"<p><p>Ferroptosis is a cell death mechanism mediated by iron-dependent lipid peroxidation. Although ferroptosis has garnered attention as a cancer-suppressing mechanism, there are still limited markers available for identifying ferroptotic cells or assessing their sensitivity to ferroptosis. The study focused on biliverdin, an endogenous reducing substance in cells, and examined the dynamics of intracellular biliverdin during ferroptosis using a biliverdin-binding cyanobacteriochrome. It was found that intracellular biliverdin decreases during ferroptosis and that this decrease is specific to ferroptosis among different forms of cell death. Furthermore, the feasibility of predicting sensitivity to ferroptosis by measuring intracellular biliverdin was demonstrated using a ferroptosis model induced by the re-expression of the transcription factor BACH1. These findings provide further insight into ferroptosis research and are expected to contribute to the development of cancer therapies that exploit ferroptosis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absolute quantification of BACH1 and BACH2 transcription factors in B and plasma cells reveals their dynamic changes and unique roles.","authors":"Takeshi Kurasawa, Akihiko Muto, Mitsuyo Matsumoto, Kyoko Ochiai, Kazutaka Murayama, Kazuhiko Igarashi","doi":"10.1093/jb/mvae065","DOIUrl":"https://doi.org/10.1093/jb/mvae065","url":null,"abstract":"<p><p>Changes in the absolute protein amounts of transcription factors are important for regulating gene expression during cell differentiation and in responses to changes in the cellular and extracellular environment. However, few studies have focused on the absolute quantification of mammalian transcription factors. In this study, we established an absolute quantification method for the transcription factors BACH1 and BACH2, which are expressed in B cells and regulated by direct heme binding. The method used purified recombinant proteins as controls in Western blotting and was applied to mouse naïve B cells in the spleen, as well as activated B cells and plasma cells. BACH1 was present in naïve B cells at approximately half the levels of BACH2. In activated B cells, BACH1 decreased compared to naïve B cells, while BACH2 increased. In plasma cells, BACH1 increased back to the same extent as in naïve B cells, while BACH2 was not detected. Their target genes Prdm1 and Hmox1 were highly induced in plasma cells. BACH1 was found to undergo degradation with lower concentrations of heme than BACH2. Therefore, BACH1 and BACH2 are similarly abundant in B cells but differ in heme sensitivity, potentially regulating gene expression differently depending on their heme responsiveness.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BACH to the ferroptosis.","authors":"Fuminori Tokunaga","doi":"10.1093/jb/mvae064","DOIUrl":"https://doi.org/10.1093/jb/mvae064","url":null,"abstract":"<p><p>Ferroptosis is regulated cell death characterized by iron-dependent phospholipid peroxidation, and is closely related to various diseases. System Xc -, a cystine/glutamate antiporter, and glutathione peroxidase 4 (GPX4) are the key molecules in ferroptosis. Erastin and RSL3, known as inhibitors of system Xc - and GPX4, respectively, are commonly used as ferroptosis inducers. BTB and CNC homology 1 (BACH1), a heme-binding transcription repressor, promotes pro-ferroptotic signaling, and therefore, Bach1-deficient cells are resistant to ferroptosis. Irikura et al. constructed Bach1-re-expressing immortalized mouse embryonic fibroblasts (iMEFs) from Bach1-/- mice, which induce ferroptosis simply by the depletion of 2-mercaptoethanol from the culture medium (J. Biochem. 2023; 174:239-252). Transcriptional repression by re-expressed BACH1 induces suppressed glutathione synthesis and increases labile iron. Furthermore, the ferroptosis initiated by BACH1-re-expressing iMEFs is propagated to surrounding cells. Thus, the BACH1-re-expression system is a novel and powerful tool to investigate the cellular basis of ferroptosis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transglutaminase mediates the hardening of fish egg envelope produced by duplication of factor XIIIA gene during the evolution of Teleostei.","authors":"Shigeki Yasumasu, Miyuki Horie, Mayuko Horie, Kodai Sakuma, Chihiro Sato, Hikari Sato, Taiki Nakajima, Tatsuki Nagasawa, Mari Kawaguchi, Ichiro Iuchi","doi":"10.1093/jb/mvae062","DOIUrl":"https://doi.org/10.1093/jb/mvae062","url":null,"abstract":"<p><p>During the fertilization of fish eggs, the hardening of the egg envelope is mediated by transglutaminase (hTGase). After fertilization, TGase undergoes processing. We isolated hTGase from extracts of unfertilized and water-activated rainbow trout eggs. Rainbow trout hTGase (Rt-hTGase) appeared as an 80 kDa protein, and its processed form was 55 kDa. Their N-terminal amino acid sequences were nearly identical, suggesting processing in the C-terminal region. The specific activities were not significantly different, indicating that C-terminal processing does not activate the enzyme itself. We cloned the cDNA by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers followed by RACE-PCR. The deduced amino acid sequence of the cDNA was similar to that of factor XIII subunit A (FXIIIA). Molecular phylogenetic and gene syntenic analyses clearly showed that hTGase was produced by duplication of FXIIIA during the evolution to Teleostei. The 55 kDa processed form of Rt-hTGase is predominantly composed of an enzyme domain predicted from the amino acid sequence of the cDNA. It is hypothesized that the C-terminal domain of Rt-hTGase binds to egg envelope proteins, and that processing allows the enzyme to move freely within the egg envelope, increasing substrate-enzyme interaction and thereby accelerating hardening.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neutral selection and clonal expansion during the development of colon cancer metastasis.","authors":"Xuelian Lei, Daisuke Yamamoto, Hirotaka Kitamura, Kenji Kita, Noriyuki Inaki, Kazuhiro Murakami, Mizuho Nakayama, Hiroko Oshima, Masanobu Oshima","doi":"10.1093/jb/mvae044","DOIUrl":"10.1093/jb/mvae044","url":null,"abstract":"<p><p>Intratumour heterogeneity has been shown to play a role in the malignant progression of cancer. The clonal evolution in primary cancer has been well studied, however, that in metastatic tumorigenesis is not fully understood. In this study, we established human colon cancer-derived organoids and investigated clonal dynamics during liver metastasis development by tracking barcode-labelled subclones. Long-term subclone co-cultures showed clonal drift, with a single subclone becoming dominant in the cell population. Interestingly, the selected subclones were not always the same, suggesting that clonal selection was not based on cell intrinsic properties. Furthermore, liver tumours developed by co-transplantation of organoid subclones into the immunodeficient mouse spleen showed a progressive drastic reduction in clonal diversity, and only one or two subclones predominated in the majority of large metastatic tumours. Importantly, selections were not limited to particular subclones but appeared to be random. A trend towards a reduction in clonal diversity was also found in liver metastases of multiple colour-labelled organoids of mouse intestinal tumours. Based on these results, we propose a novel mechanism of metastasis development, i.e. a subclone population of the disseminated tumour cells in the liver is selected by neutral selection during colonization and constitutes large metastatic tumours.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Onnamide A suppresses the severe acute respiratory syndrome-coronavirus 2 infection without inhibiting 3-chymotrypsin-like cysteine protease.","authors":"Yasuhiro Hayashi, Nanami Higa, Tetsuro Yoshida, Trianda Ayuning Tyas, Kanami Mori-Yasumoto, Mina Yasumoto-Hirose, Hideki Tani, Junichi Tanaka, Takahiro Jomori","doi":"10.1093/jb/mvae037","DOIUrl":"10.1093/jb/mvae037","url":null,"abstract":"<p><p>Given the continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of new inhibitors is necessary to enhance clinical efficacy and increase the options for combination therapy for the coronavirus disease 2019. Because marine organisms have been a resource for the discovery of numerous bioactive molecules, we constructed an extract library of marine invertebrates collected from the Okinawa Islands. In this study, the extracts were used to identify antiviral molecules against SARS-CoV-2. Using a cytopathic effect (CPE) assay in VeroE6/TMPRSS2 cells, an extract from the marine sponge Theonella swinhoei was found to reduce virus-induced CPE. Eventually, onnamide A was identified as an antiviral compound in the extract using column chromatography and NMR analysis. Onnamide A inhibited several SARS-CoV-2 variant-induced CPEs in VeroE6/TMPRSS2 cells as well as virus production in the supernatant of infected cells. Moreover, this compound blocked the entry of SARS-CoV-2 pseudo-virions. Taken together, these results demonstrate that onnamide A suppresses SARS-CoV-2 infection, which may be partially related to entry inhibition, and is expected to be a candidate lead compound for the development of anti-SARS-CoV-2 drugs.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amino acid residues responsible for the different pH dependency of cell-specific ferredoxins in the electron transfer reaction with ferredoxin-NADP+ reductase from maize leaves.","authors":"Yoko Kimata-Ariga, Hikaru Tanaka, Shunsuke Kuwano","doi":"10.1093/jb/mvae043","DOIUrl":"10.1093/jb/mvae043","url":null,"abstract":"<p><p>In the chloroplast stroma, dynamic pH changes occur from acidic to alkaline in response to fluctuating light conditions. We investigated the pH dependency of the electron transfer reaction of ferredoxin-NADP+ reductase (FNR) with ferredoxin (Fd) isoproteins, Fd1 and Fd2, which are localized in mesophyll cells and bundle sheath cells, respectively, in the leaves of C4 plant maize. The pH-dependent profile of the electron transfer activity with FNR was quite different between Fd1 and Fd2, which was mainly explained by the opposite pH dependency of the Km value of these Fds for FNR. Replacement of the amino acid residue at position of 65 (D65N) and 78 (H78A) between the two Fds conferred different effect on their pH dependency of the Km value. Double mutations of the two residues between Fd1 and Fd2 (Fd1D65N/H78A and Fd2N65D/A78H) led to the mutual exchange of the pH dependency of the electron transfer activity. This exchange was mainly explained by the changes in the pH-dependent profile of the Km values. Therefore, the differences in Asp/Asn at position 65 and His/Ala at position 78 between Fd1 and Fd2 were shown to be the major determinants for their different pH dependency in the electron transfer reaction with FNR.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive analysis of non-selective and selective autophagy in yeast atg mutants and characterization of autophagic activity in the absence of the Atg8 conjugation system.","authors":"Tamara Ginevskaia, Aleksei Innokentev, Kentaro Furukawa, Tomoyuki Fukuda, Manabu Hayatsu, Shun-Ichi Yamashita, Keiichi Inoue, Shinsuke Shibata, Tomotake Kanki","doi":"10.1093/jb/mvae042","DOIUrl":"10.1093/jb/mvae042","url":null,"abstract":"<p><p>Most autophagy-related genes, or ATG genes, have been identified through studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}