{"title":"组蛋白H2B异构体H2bc27在小鼠胚胎发育中的大脑中表达。","authors":"Saki Egashira, Kazumitsu Maehara, Kaori Tanaka, Mako Nakamura, Tatsuya Takemoto, Yasuyuki Ohkawa, Akihito Harada","doi":"10.1093/jb/mvaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Histones bind directly to DNA and play a role in regulating gene expression in part by influencing chromatin structure. The DNA sequences of these histone genes are quite similar, which has hindered individual analyses. The exact function of the 13 different isoforms of histone H2B remains unclear. In this study, we performed a comprehensive gene expression analysis of the H2B isoforms, focusing on tissue specificity. Our results revealed that the H2bc27 gene exhibited brain-specific expression in mice at E14.5. We generated mice lacking the H2bc27 gene using the CRISPR /Cas9 system. While the phenotype of H2bc27 knockout mouse brains was not different from that of wild-type mouse brains, transcriptome analysis indicated that H2bc27 is associated with regulating the expression of several functional genes involved in mouse brain development. The methods used in this study may serve to facilitate comprehensive H2B isoform analysis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histone H2B isoform H2bc27 is expressed in the developing brain of mouse embryos.\",\"authors\":\"Saki Egashira, Kazumitsu Maehara, Kaori Tanaka, Mako Nakamura, Tatsuya Takemoto, Yasuyuki Ohkawa, Akihito Harada\",\"doi\":\"10.1093/jb/mvaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histones bind directly to DNA and play a role in regulating gene expression in part by influencing chromatin structure. The DNA sequences of these histone genes are quite similar, which has hindered individual analyses. The exact function of the 13 different isoforms of histone H2B remains unclear. In this study, we performed a comprehensive gene expression analysis of the H2B isoforms, focusing on tissue specificity. Our results revealed that the H2bc27 gene exhibited brain-specific expression in mice at E14.5. We generated mice lacking the H2bc27 gene using the CRISPR /Cas9 system. While the phenotype of H2bc27 knockout mouse brains was not different from that of wild-type mouse brains, transcriptome analysis indicated that H2bc27 is associated with regulating the expression of several functional genes involved in mouse brain development. The methods used in this study may serve to facilitate comprehensive H2B isoform analysis.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf026\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Histone H2B isoform H2bc27 is expressed in the developing brain of mouse embryos.
Histones bind directly to DNA and play a role in regulating gene expression in part by influencing chromatin structure. The DNA sequences of these histone genes are quite similar, which has hindered individual analyses. The exact function of the 13 different isoforms of histone H2B remains unclear. In this study, we performed a comprehensive gene expression analysis of the H2B isoforms, focusing on tissue specificity. Our results revealed that the H2bc27 gene exhibited brain-specific expression in mice at E14.5. We generated mice lacking the H2bc27 gene using the CRISPR /Cas9 system. While the phenotype of H2bc27 knockout mouse brains was not different from that of wild-type mouse brains, transcriptome analysis indicated that H2bc27 is associated with regulating the expression of several functional genes involved in mouse brain development. The methods used in this study may serve to facilitate comprehensive H2B isoform analysis.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.