{"title":"UNC5B is an isoform-dependent target for ectodomain shedding.","authors":"Kotaro Sugimoto, Eichi Watabe, Mio Takuma, Kaname Nagahara, Toshinori Sawano, Mihoko Kajita, Junichi Takagi, Hidehito Kuroyanagi, Kyoko Shirakabe","doi":"10.1093/jb/mvaf043","DOIUrl":"https://doi.org/10.1093/jb/mvaf043","url":null,"abstract":"<p><p>Ectodomain shedding (shedding) is a processing mechanism that cleaves the juxtamembrane region of membrane proteins and solubilizes almost the entire extracellular domain. Shedding irreversibly regulates the localization and function of membrane proteins; however, its physiological role is not fully understood. Previously, we showed that the shedding susceptibility of multiple membrane proteins is altered by skipping or inclusion of skipping exon(s) that encode their juxtamembrane region. In this study, we screened the skipping exon encoding the juxtamembrane region of membrane proteins and found that the shedding susceptibility of UNC5B, a Netrin-1 receptor, is altered by skipping or inclusion of the skipping exon encoding its juxtamembrane region. These results raise the possibility that the biological phenomena involving UNC5B, including neural circuit formation, angiogenesis, and cancer development, are regulated by shedding in a splice isoform-dependent manner.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repressive S-adenosylmethionine biosynthesis status inhibits transcription of HeT-A retrotransposon in the germline of Drosophila.","authors":"Yoshiki Hayashi, Shinjiro Hino, Tetsuya Sato, Soshiro Kashio, Kiito Otsubo, Kuniaki Saito, Ban Sato, Natsuko Kawano, Daisuke Saito, Masayuki Miura, Mikita Suyama, Mitsuyoshi Nakao, Satoru Kobayashi","doi":"10.1093/jb/mvaf041","DOIUrl":"https://doi.org/10.1093/jb/mvaf041","url":null,"abstract":"<p><p>S-adenosylmethionine (SAM) is the major cellular methyl donor and regulates gene expression through epigenetic and other methylation-related processes. While SAM biosynthesis influences a variety of biological phenomena including aging and disease, its cell type-specific regulation and functional implications remain poorly understood. In this study, we report that the Drosophila germline exhibits a uniquely repressive SAM biosynthesis status during gametogenesis, as indicated by low expression of SAM synthetase (Sam-S), a key enzyme for SAM production. Experimentally enhancing SAM biosynthesis in the germline led to increased expression of retrotransposons, with HeT-A, a telomere-specific element, showing the most pronounced response. We also observed increased promoter activity of HeT-A under high SAM conditions, along with accumulation of N6-methyladenine (6mA), the major form of DNA methylation in the Drosophila genome. Although a direct causal link between 6mA levels and transcription was not broadly observed across other retrotransposons or genes, these results raise the possibility that SAM levels modulate HeT-A expression at least in part through DNA methylation. Our findings highlight a previously underexplored metabolic feature of the Drosophila germline and suggest that SAM availability contributes to the regulation of retrotransposon activity in a lineage-specific manner.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144540355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NMR analysis of interaction between RNA structure elements and small molecules.","authors":"Megumi Tomemori, Rika Ichijo, Yoko Shinohara, Kaori Hatta, Kazuhiko Nakatani, Gota Kawai","doi":"10.1093/jb/mvaf020","DOIUrl":"10.1093/jb/mvaf020","url":null,"abstract":"<p><p>RNA-targeted small molecule drug discovery is widely recognized as an important modality. However, not enough knowledge on the interaction between RNAs and small molecules is accumulated yet. In the present study, 46 RNAs were designed with various internal loops or hairpin loops based on a 29-mer model RNA. The interaction of designed RNAs and three kinds of small molecules, risdiplam, naphthyridine carbamate dimer (NCD) and ciprofloxacin, were examined by nuclear magnetic resonance (NMR) spectroscopy. The results of interaction experiments were quantitatively analysed and RNAs interacting with the small molecules were selected. Among the three compounds, NCD shows relatively stronger affinity to some of the model RNAs as judged by the NMR spectra, and binding sites of NCD for two RNAs were determined. The measurement condition used in this work, including the annealing free sample preparation as well as the Mg2+ free sodium phosphate buffer, can be the standard for the initial NMR screening in the RNA-targeted small molecule drug discovery.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144002320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of autophagy by Atg7 knockdown enhances chemosensitivity in gemcitabine/paclitaxel-resistant pancreatic cancer MIAPaCa2 cells.","authors":"Yudai Kudo, Kotaro Hirota, Honoka Tsuzuki, Shinya Kawano, Tomofumi Saka, Riri Hayashi, Yuta Yoshino, Akira Ikari, Satoshi Endo","doi":"10.1093/jb/mvaf022","DOIUrl":"10.1093/jb/mvaf022","url":null,"abstract":"<p><p>The 5-year survival rate for pancreatic cancer is extremely low, at ~12%, primarily because most patients present with advanced and unresectable tumours. Chemotherapy regimens, such as gemcitabine (GEM) plus paclitaxel (PTX) and FOLFIRINOX, are standard treatments; however, resistance to these therapies remains a major challenge. Autophagy has been implicated in this resistance. Both the Atg8 and Atg12 conjugation systems are essential for autophagosome maturation, and the ubiquitin-like protein activator Atg7 plays an essential role in these systems. This study investigated the effects of Atg7 knockdown on GEM/PTX sensitivity in GEM/PTX-resistant pancreatic cancer MIAPaCa2 (GP-R) cells. GP-R cells exhibited reduced sensitivity to GEM/PTX, increased expression of autophagy-related factors, and elevated basal autophagy compared to parental cells. Atg7 knockdown in GP-R cells effectively inhibited both basal and GEM/PTX-induced autophagy, significantly increased total and mitochondrial reactive oxygen species (ROS), and led to the induction of apoptotic cell death. These findings suggest that autophagy inhibition via Atg7 knockdown enhances GEM/PTX sensitivity in GP-R cells. In conclusion, targeting Atg7 to inhibit autophagy may be a promising approach to improving the efficacy of GEM/PTX therapy in pancreatic cancer.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"11-24"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZNRF1-dependent regulation of AKT activity modulates Nav subcellular localization and AIS position in neurons to regulate fear-related behaviour.","authors":"Moeka Ohno, Shuji Wakatsuki, Hiroshi Kuniishi, Masayuki Sekiguchi, Eri Takeuchi, Keizo Takao, Megumi Watase, Takaya Abe, Toshiyuki Araki","doi":"10.1093/jb/mvaf024","DOIUrl":"10.1093/jb/mvaf024","url":null,"abstract":"<p><p>The axon initial segment (AIS) is a specialized compartment at the proximal axon, characterized by condensed localization of specific cytoskeletal proteins, including Ankyrin G (AnkG) and βIV-spectrin, which organize voltage-gated ion channels. The location and morphology of the AIS can change in response to neuronal activity; however, the precise mechanisms for the AIS plasticity remain unclear. Previously, we demonstrated that ubiquitin E3 ligase ZNRF1 is localized to presynaptic terminals in cultured hippocampal neurons and may play a role in Ca2+-dependent exocytosis. Here, we show that using ZNRF1 knockout (ZNRF1 KO) mice, ZNRF1-dependent AKT degradation induces AIS shift and increased cell surface localization of voltage-gated sodium channel Nav1.2. We also found that ZNRF1 KO mice exhibit enhanced short-term fear memory and increased contextual fear memory. These findings suggest that ZNRF1 may serve as a novel regulator of AIS localization.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"39-50"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144026151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppresses cell proliferation in metastatic melanoma through TC-PTP/PTPN2 and SH-PTP2/PTPN11.","authors":"Yuki Akamatsu, Mami Onishi, Taiki Nagano, Masahiro Oka, Shinji Kamada, Tetsushi Iwasaki","doi":"10.1093/jb/mvaf040","DOIUrl":"https://doi.org/10.1093/jb/mvaf040","url":null,"abstract":"<p><p>Despite being a carcinogen, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits metastatic melanoma growth by downregulating signal transducer and activator of transcription 3 (STAT3). However, the molecular mechanisms remain unclear. The aim of this study was to identify tyrosine phosphatases that are involved in TPA-induced inhibition of cell proliferation in metastatic melanoma cells. We screened protein tyrosine phosphatases (PTPs) required for TPA-mediated inhibition of cell proliferation. We identified two PTPs, SH2 domain-containing protein tyrosine phosphatase2 (SH-PTP2/PTPN11) and T-cell protein tyrosine phosphatase (TC-PTP/PTPN2), which play key roles in TPA-mediated inhibition of metastatic melanoma cell growth. Transient expression of SH-PTP2 and TC-PTP induced G0/G1 cell cycle arrest in a phosphatase-dependent manner. Furthermore, SH-PTP2 was translocated to the cell membrane upon TPA treatment, resulting in a decrease in Janus kinase 2 (JAK2) activity. TC-PTP is localized in the nucleus together with the adapter protein ubiquitin-like protein 4A (UBL4A/GdX); TC-PTP was translocated to the nuclear periphery upon TPA stimulation. These two signaling pathways, involving SH-PTP2 and TC-PTP, are distinct from those observed in normal melanocytes and benign melanoma cells. These pathways represent previously unknown responses to TPA specific to metastatic melanoma cells. Overall, these findings may contribute to the development of new anticancer agents.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valosin-containing protein mediates DNA-dependent protein kinase activation in response to DNA topoisomerase II-associated DNA double-strand breaks.","authors":"Ryo Sakasai, Yumi Sunatani, Tadashi Matsui, Kuniyoshi Iwabuchi","doi":"10.1093/jb/mvaf025","DOIUrl":"10.1093/jb/mvaf025","url":null,"abstract":"<p><p>DNA topoisomerase II (Top2) induces DNA double-strand breaks (DSBs) to relieve the torsional stress associated with DNA replication and transcription. Etoposide (ETP), a Top2 poison in clinical use as an anticancer drug, traps Top2 reactive intermediates, resulting in the accumulation of DSBs, coupled with the formation of Top2-DNA protein crosslinks (Top2-DPC) at the ends of DSBs. Proteasome-dependent processing of trapped Top2 is necessary for some cellular responses to ETP-induced DSBs; however, the effect of suppressing Top2 removal on DSB repair is not well understood. In this study, we focused on valosin-containing protein (VCP), a proteasome mediator, to analyse the effect of the suppression of Top2-DPC resolution on the repair of ETP-induced DSBs. ETP-induced activation of DNA-dependent protein kinase (DNA-PK), a non-homologous end-joining (NHEJ) factor, was suppressed by VCP inhibitors, similar to the effects observed in proteasome-inhibited cells. Consistent with this finding, VCP inhibition suppressed repair activity in response to ETP-induced DSBs. Additionally, VCP inhibition delayed the resolution of ETP-induced Top2-DPC. These results suggest that the processing of trapped Top2 via the VCP-proteasome pathway is important for efficient DNA-PK activation and subsequent repair in response to ETP-induced DSBs.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"51-60"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kosuke Shiraishi, Banri Kitamura, Kaho Aramaki, Yasuyoshi Sakai, Jun Hoseki
{"title":"Improvement of a FRET-based redox probe Redoxfluor through circular permutation and effects of substitution of cysteine residues on its redox properties.","authors":"Kosuke Shiraishi, Banri Kitamura, Kaho Aramaki, Yasuyoshi Sakai, Jun Hoseki","doi":"10.1093/jb/mvaf023","DOIUrl":"10.1093/jb/mvaf023","url":null,"abstract":"<p><p>The properties of a FRET-based redox probe Redoxfluor have been improved for its sensitivity and dynamic range. Substitution of the Citrine portion of Redoxfluor with circular permutated (cp) Citrine improved the dynamic range without affecting the redox potential. The cp158 mutant, referred to as Redoxfluor 2, possessed the most extended dynamic range and detected intracellular redox changes in yeast and bacteria, while the original did not. Investigation of the glutathione-redox dependency of the FRET ratio of various cysteine-substituted mutants revealed that Cys230 in the linker between Cerulean and the C-terminal cysteine-rich domain (CRD) and Cys385 in Citrine are essential for glutathione redox sensing. Although neither cysteine residues in CRD is essential for glutathione redox sensing, substitution of the CRD cysteine residues prominently affected the dynamic range of redox sensing and the redox potential titrated with glutathione. One of the CRD cysteine-substituted mutants (C259A) showed a greatly extended dynamic range and a substantially reducing redox potential compared to the original Redoxfluor. Redoxfluor 2 and the C259A mutant are suitable for versatile uses including sensitive detection of aberrant redox states, redox visualization in the more reducing intracellular compartments and high-throughput screening of redox modulators active against pathologically abnormal redox states.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"25-38"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144078323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction between a fluoroquinolone derivative KG022 and RNAs: effect of the bulged residues.","authors":"Rika Ichijo, Gota Kawai","doi":"10.1093/jb/mvaf039","DOIUrl":"https://doi.org/10.1093/jb/mvaf039","url":null,"abstract":"<p><p>To progress the RNA-binding small molecule drug discovery, the specific interaction between RNAs having a single bulge and a fluoroquinolone derivative, KG022, was analyzed by NMR spectroscopy. In our previous work, it was found that KG022 is located between the two base pairs at the 3' and 5' side of the bulged residue. KG022 prefers G or C as the bulged residue and, in the present study, the reason for this preference was analyzed by using RNAs with modified nucleoside residues as the bulged residue. It was found that the amino groups of bulged guanine and cytidine bases interact with the oxygen atoms of the backbone phosphate groups, and the oxygen and nitrogen atoms of bulged guanine and cytidine bases interact with the piperazine group of KG022. Thus, this work presents an example of the mechanism of the specific recognition of a small molecule by RNAs.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144496785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Innate immune signals triggered on organelle membranes.","authors":"","doi":"10.1093/jb/mvaf035","DOIUrl":"https://doi.org/10.1093/jb/mvaf035","url":null,"abstract":"","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144484533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}