{"title":"Histone H2B isoform H2bc27 is expressed in the developing brain of mouse embryos.","authors":"Saki Egashira, Kazumitsu Maehara, Kaori Tanaka, Mako Nakamura, Tatsuya Takemoto, Yasuyuki Ohkawa, Akihito Harada","doi":"10.1093/jb/mvaf026","DOIUrl":"https://doi.org/10.1093/jb/mvaf026","url":null,"abstract":"<p><p>Histones bind directly to DNA and play a role in regulating gene expression in part by influencing chromatin structure. The DNA sequences of these histone genes are quite similar, which has hindered individual analyses. The exact function of the 13 different isoforms of histone H2B remains unclear. In this study, we performed a comprehensive gene expression analysis of the H2B isoforms, focusing on tissue specificity. Our results revealed that the H2bc27 gene exhibited brain-specific expression in mice at E14.5. We generated mice lacking the H2bc27 gene using the CRISPR /Cas9 system. While the phenotype of H2bc27 knockout mouse brains was not different from that of wild-type mouse brains, transcriptome analysis indicated that H2bc27 is associated with regulating the expression of several functional genes involved in mouse brain development. The methods used in this study may serve to facilitate comprehensive H2B isoform analysis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144078321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valosin-containing protein mediates DNA-dependent protein kinase activation in response to DNA topoisomerase II-associated DNA double-strand breaks.","authors":"Ryo Sakasai, Yumi Sunatani, Tadashi Matsui, Kuniyoshi Iwabuchi","doi":"10.1093/jb/mvaf025","DOIUrl":"https://doi.org/10.1093/jb/mvaf025","url":null,"abstract":"<p><p>DNA topoisomerase II (Top2) induces DNA double-strand breaks (DSBs) to relieve the torsional stress associated with DNA replication and transcription. Etoposide (ETP), a Top2 poison in clinical use as an anticancer drug, traps Top2 reactive intermediates, resulting in the accumulation of DSBs, coupled with the formation of Top2-DNA protein crosslinks (Top2-DPC) at the ends of DSBs. Proteasome-dependent processing of trapped Top2 is necessary for some cellular responses to ETP-induced DSBs; however, the effect of suppressing Top2 removal on DSB repair is not well understood. In this study, we focused on valosin-containing protein (VCP), a proteasome mediator, to analyze the effect of the suppression of Top2-DPC resolution on the repair of ETP-induced DSBs. ETP-induced activation of DNA-dependent protein kinase (DNA-PK), a non-homologous end-joining (NHEJ) factor, was suppressed by VCP inhibitors, similar to the effects observed in proteasome-inhibited cells. Consistent with this finding, VCP inhibition suppressed repair activity in response to ETP-induced DSBs. Additionally, VCP inhibition delayed the resolution of ETP-induced Top2-DPC. These results suggest that the processing of trapped Top2 via the VCP-proteasome pathway is important for efficient DNA-PK activation and subsequent repair in response to ETP-induced DSBs.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kosuke Shiraishi, Banri Kitamura, Kaho Aramaki, Yasuyoshi Sakai, Jun Hoseki
{"title":"Improvement of a FRET-based redox probe Redoxfluor through circular permutation and effects of substitution of cysteine residues on its redox properties.","authors":"Kosuke Shiraishi, Banri Kitamura, Kaho Aramaki, Yasuyoshi Sakai, Jun Hoseki","doi":"10.1093/jb/mvaf023","DOIUrl":"https://doi.org/10.1093/jb/mvaf023","url":null,"abstract":"<p><p>The properties of a FRET-based redox probe Redoxfluor have been improved for its sensitivity and dynamic range. Substitution of the Citrine portion of Redoxfluor with circular permutated (cp) Citrine improved the dynamic range without affecting the redox potential. The cp158 mutant, referred to as Redoxfluor 2, possessed the most extended dynamic range and detected intracellular redox changes in yeast and bacteria, while the original did not. Investigation of the glutathione-redox dependency of the FRET ratio of various cysteine-substituted mutants revealed that Cys230 in the linker between Cerulean and the C-terminal cysteine-rich domain (CRD) and Cys385 in Citrine are essential for glutathione redox sensing. Although neither cysteine residues in CRD is essential for glutathione redox sensing, substitution of the CRD cysteine residues prominently affected the dynamic range of redox sensing and the redox potential titrated with glutathione. One of the CRD cysteine-substituted mutants (C259A) showed a greatly extended dynamic range and a substantially reducing redox potential compared to the original Redoxfluor. Redoxfluor 2 and the C259A mutant are suitable for versatile uses including sensitive detection of aberrant redox states, redox visualization in the more reducing intracellular compartments, and high-throughput screening of redox modulators active against pathologically abnormal redox states.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144078323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of autophagy by Atg7 knockdown enhances chemosensitivity in gemcitabine/paclitaxel-resistant pancreatic cancer MIAPaCa2 cells.","authors":"Yudai Kudo, Kotaro Hirota, Honoka Tsuzuki, Shinya Kawano, Tomofumi Saka, Riri Hayashi, Yuta Yoshino, Akira Ikari, Satoshi Endo","doi":"10.1093/jb/mvaf022","DOIUrl":"https://doi.org/10.1093/jb/mvaf022","url":null,"abstract":"<p><p>The 5-year survival rate for pancreatic cancer is extremely low, at approximately 12%, primarily because most patients present with advanced and unresectable tumors. Chemotherapy regimens, such as gemcitabine (GEM) plus paclitaxel (PTX) and FOLFIRINOX, are standard treatments; however, resistance to these therapies remains a major challenge. Autophagy has been implicated in this resistance. Both the Atg8 and Atg12 conjugation systems are essential for autophagosome maturation, and the ubiquitin-like protein activator Atg7 plays an essential role in these systems. This study investigated the effects of Atg7 knockdown on GEM/PTX sensitivity in GEM/PTX-resistant pancreatic cancer MIAPaCa2 (GP-R) cells. GP-R cells exhibited reduced sensitivity to GEM/PTX, increased expression of autophagy-related factors, and elevated basal autophagy compared to parental cells. Atg7 knockdown in GP-R cells effectively inhibited both basal and GEM/PTX-induced autophagy, significantly increased total and mitochondrial reactive oxygen species (ROS), and led to the induction of apoptotic cell death. These findings suggest that autophagy inhibition via Atg7 knockdown enhances GEM/PTX sensitivity in GP-R cells. In conclusion, targeting Atg7 to inhibit autophagy may be a promising approach to improving the efficacy of GEM/PTX therapy in pancreatic cancer.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZNRF1-dependent regulation of AKT activity modulates Nav subcellular localization and AIS position in neurons to regulate fear-related behavior.","authors":"Moeka Ohno, Shuji Wakatsuki, Hiroshi Kuniishi, Masayuki Sekiguchi, Eri Takeuchi, Keizo Takao, Megumi Watase, Takaya Abe, Toshiyuki Araki","doi":"10.1093/jb/mvaf024","DOIUrl":"https://doi.org/10.1093/jb/mvaf024","url":null,"abstract":"<p><p>The axon initial segment (AIS) is a specialized compartment at the proximal axon, characterized by condensed localization of specific cytoskeletal proteins, including Ankyrin G (AnkG) and βIV-spectrin which organize voltage-gated ion channels (VGICs). The location and morphology of the AIS can change in response to neuronal activity; however, the precise mechanisms for the AIS plasticity remain unclear. Previously, we demonstrated that ubiquitin E3 ligase ZNRF1 is localized to presynaptic terminals in cultured hippocampal neurons and may play a role in Ca2+-dependent exocytosis. Here, we show that using ZNRF1 knockout (ZNRF1 KO) mice, ZNRF1-dependent AKT degradation induces AIS shift and increased cell surface localization of voltage-gated sodium channel Nav1.2. We also found that ZNRF1 KO mice exhibit enhanced short-term fear memory and increased contextual fear memory. These findings suggest that ZNRF1 may serve as a novel regulator of AIS localization.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144026151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asmaa M Youssef, Ahmed M Moustafa, Motoharu Hamada, Mayumi Sugiura-Ogasawara, Hisashi Oishi
{"title":"A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.","authors":"Asmaa M Youssef, Ahmed M Moustafa, Motoharu Hamada, Mayumi Sugiura-Ogasawara, Hisashi Oishi","doi":"10.1093/jb/mvaf006","DOIUrl":"10.1093/jb/mvaf006","url":null,"abstract":"<p><p>The uterine endometrium consists of luminal epithelium, glandular epithelium and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial (GE) cells. The method combines mechanical dissociation, enzymatic digestion and immunomagnetic separation. The isolated GE cells were maintained in culture and exhibited proliferation in response to steroid hormones. Furthermore, oestrogen responsiveness was abrogated by Estrogen Receptor 1 (Esr1) knockdown mediated by siRNA. Here, we present an efficient and reproducible method for isolating uterine GE cells with high purity, enabling their in vitro maintenance, hormone responsiveness assessment and functional gene knockdown. These findings establish a robust platform for advancing our understanding of uterine gland biology, facilitating detailed investigations into molecular mechanisms underlying glandular function and their critical roles in establishing pregnancy success. Future research could explore the contribution of these isolated cells to endometrial receptivity and embryo implantation.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"329-337"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Various methods to detect small GTPase activation: from radioisotope-based methods to the Small GTPase ActIvitY ANalysing (SAIYAN) system.","authors":"Miharu Maeda, Kota Saito","doi":"10.1093/jb/mvaf012","DOIUrl":"10.1093/jb/mvaf012","url":null,"abstract":"<p><p>Small GTPases act as molecular switches regulating various cellular processes by cycling between the GDP- and GTP-bound states. Several methods, including radioisotope-based nucleotide exchange assays, effector-binding pull-down assays and fluorescence-based biosensor methods, have been developed to assess the activation of small GTPases. In vitro techniques mainly provide quantitative insights, whereas live-cell imaging approaches facilitate the real-time monitoring of the activation dynamics of small GTPases. Recent advances, such as the development of fluorescence resonance energy transfer-based probes and membrane-localization sensors, have improved the spatial and temporal resolution of small GTPase activation dynamics. Specifically, the small GTPase activity analysing system using a split fluorescent protein to detect membrane recruitment upon activation provides a novel approach to study small GTPases in living cells. This review comprehensively discusses various conventional and emerging small GTPase activation analysis techniques, highlighting their advantages and disadvantages in studying small GTPase activation dynamics under different cellular conditions.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"321-327"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondria-targeting siRNA screening identifies mitochondrial calcium uniporter as a factor involved in nucleoid morphology.","authors":"Hirotaka Kanon, Takaya Ishihara, Reiko Ban-Ishihara, Azusa Ota, Tatsuki Yasuda, Aoi Ichikawa, Ruo Ueyama, Taiki Baba, Kohsuke Takeda, Emi Ogasawara, Naotada Ishihara","doi":"10.1093/jb/mvaf008","DOIUrl":"10.1093/jb/mvaf008","url":null,"abstract":"<p><p>Mitochondria are believed to have originated from the endosymbiosis of bacteria and they still contain their own genome, which is called mitochondrial DNA (mtDNA). Under fluorescence microscopy of cultured mammalian cells, mtDNA is observed as numerous tiny dot-like structures called mitochondrial nucleoids. In live-imaging, the morphology and distribution of nucleoids are changed dynamically, but the molecular details remain poorly understood. In this study, we constructed a custom siRNA library targeting 1,164 human mitochondria-related genes, and from live-imaging-based screening of HeLa cells, we identified that mitochondrial calcium uniporter (MCU), a pore-forming subunit of the mitochondrial Ca2+ channel, is involved in nucleoid morphology. We found that suppression of MCU by RNAi induced the formation of highly enlarged nucleoids as well as respiratory dysfunction and that the re-introduction of MCU or treatment with Ca2+ ionophore recovered the enlarged nucleoid morphology. These results suggest that mitochondrial Ca2+ uptake via MCU is associated with nucleoid morphology. The constructed siRNA library might be widely applied to analyze the roles of mitochondrial proteins in various cellular events, making it useful to understand the multifaceted functions of mitochondria in human cells.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"339-350"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The HP1 hinge region: more than just a linker for heterochromatin.","authors":"Hiroaki Tachiwana, Noriko Saitoh","doi":"10.1093/jb/mvaf005","DOIUrl":"10.1093/jb/mvaf005","url":null,"abstract":"<p><p>Heterochromatin plays an important role in eukaryotic cellular functions, including gene silencing, higher-order chromatin structure, genome stability and so on. Heterochromatin protein 1 (HP1), a key component of heterochromatin, is conserved from fission yeast to mammals. HP1 binds to histone H3K9me, a hallmark of heterochromatin, through its N-terminal chromodomain (CD) and self-dimerizes and recruits other chromatin proteins through its C-terminal chromo shadow domain (CSD), acting as an epigenetic reader. Between the CD and CSD is an unstructured, less conserved hinge region, which has been implicated in nucleic acid binding. The molecular dissection of the fission yeast HP1 orthologue, Chp2, recently reported in this journal, elucidated the cooperative DNA binding of the hinge and N-terminus of the CSD, which contributes to the stable association with heterochromatin and gene silencing. In this commentary, we focus on the mechanisms involving the HP1 hinge region, which is more than a simple linker.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"317-319"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Method for isolation and quantification of inositol glycan produced by glycosylinositol phosphoceramide-hydrolysing phospholipase D in plants.","authors":"Majidul Islam, Rumana Yesmin Hasi, Yuta Umemura, Hide-Nori Tanaka, Yudai Kondo, Toshiki Ishikawa, Minoru Nagano, Hanif Ali, Ryushi Kawakami, Mutsumi Aihara, Tamotsu Tanaka","doi":"10.1093/jb/mvaf013","DOIUrl":"10.1093/jb/mvaf013","url":null,"abstract":"<p><p>Glycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipids in plants. Previously, we found phospholipase D (PLD) activity that hydrolyzes GIPC to phytoceramide 1-phosphate (PCerP) in plants and revealed that GIPC-PLD activity is carried out by an enzyme encoded by non-specific phospholipase C3 (NPC3) gene. In this study, we established a method for isolation and quantification of inositol glycan (InoGly), a counterpart of PCerP produced from GIPC, using TLC imaging. We confirmed that Arabidopsis thaliana NPC3 protein and partially purified GIPC-PLD from cabbage produced InoGly in a similar amount to that of PCerP from purified GIPC. We applied our method to determination of InoGly present in plant tissues and found that it was present at 40-80 nmol/g (wet weight) in cabbage leaves, radish root and broccoli stem and increased to 80-120 nmol/g after homogenization of the tissues. Similar increases in PCerP and decreases in GIPC were observed after homogenization, indicating that InoGly and PCerP were produced from GIPC by GIPC-PLD activity in response to homogenization. We believe our method, which does not require a complicated process or large device, will contribute to a better understanding of GIPC metabolism and signalling in plants.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"387-394"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}