{"title":"基于fret的生物传感器moxCRONOS能够定量监测细胞器和蛋白质聚集体中的大分子拥挤。","authors":"Yurina Nakajima, Hiroaki Suzuki, Tamami Miyagi, Kohsuke Kanekura","doi":"10.1093/jb/mvaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Macromolecular crowding is a fundamental property of the intracellular environment that influences protein folding, enzymatic activity, and phase behavior. Disruptions to the homeostasis of macromolecular crowding can drive pathological processes, such as aberrant liquid-liquid phase separation and protein aggregation, which are central features of several neurodegenerative diseases. However, tools for quantifying crowding and aggregation remain limited. Here, we describe moxCRONOS, a Förster resonance energy transfer (FRET)-based biosensor that enables the quantitative measurement of macromolecular crowding and protein condensation. moxCRONOS retains the optical properties of the original CRONOS sensor but offers enhanced stability in oxidative environments, such as within the endoplasmic reticulum or under sodium arsenite treatment, allowing for direct comparison of crowding levels across organelles regardless of redox conditions. Moreover, when fused to dipeptide repeat proteins associated with C9ORF72-linked neurodegeneration, moxCRONOS detects aggregation-prone states-especially in cells expressing glycine-alanine (GA) repeats. Using fluorescence-activated cell sorting, we achieved sensitive and quantitative detection of heterogeneous high-FRET cell populations containing GA aggregates. FRET signal intensity increased upon treatment with a molecular crowding agent or a proteasome inhibitor. These findings establish moxCRONOS as a versatile biosensor for investigating both physiological macromolecular crowding and pathological protein aggregation, with significant potential for disease modeling and therapeutic screening.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRET-based biosensor moxCRONOS enables quantitative monitoring of macromolecular crowding in organelles and protein aggregates.\",\"authors\":\"Yurina Nakajima, Hiroaki Suzuki, Tamami Miyagi, Kohsuke Kanekura\",\"doi\":\"10.1093/jb/mvaf056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macromolecular crowding is a fundamental property of the intracellular environment that influences protein folding, enzymatic activity, and phase behavior. Disruptions to the homeostasis of macromolecular crowding can drive pathological processes, such as aberrant liquid-liquid phase separation and protein aggregation, which are central features of several neurodegenerative diseases. However, tools for quantifying crowding and aggregation remain limited. Here, we describe moxCRONOS, a Förster resonance energy transfer (FRET)-based biosensor that enables the quantitative measurement of macromolecular crowding and protein condensation. moxCRONOS retains the optical properties of the original CRONOS sensor but offers enhanced stability in oxidative environments, such as within the endoplasmic reticulum or under sodium arsenite treatment, allowing for direct comparison of crowding levels across organelles regardless of redox conditions. Moreover, when fused to dipeptide repeat proteins associated with C9ORF72-linked neurodegeneration, moxCRONOS detects aggregation-prone states-especially in cells expressing glycine-alanine (GA) repeats. Using fluorescence-activated cell sorting, we achieved sensitive and quantitative detection of heterogeneous high-FRET cell populations containing GA aggregates. FRET signal intensity increased upon treatment with a molecular crowding agent or a proteasome inhibitor. These findings establish moxCRONOS as a versatile biosensor for investigating both physiological macromolecular crowding and pathological protein aggregation, with significant potential for disease modeling and therapeutic screening.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FRET-based biosensor moxCRONOS enables quantitative monitoring of macromolecular crowding in organelles and protein aggregates.
Macromolecular crowding is a fundamental property of the intracellular environment that influences protein folding, enzymatic activity, and phase behavior. Disruptions to the homeostasis of macromolecular crowding can drive pathological processes, such as aberrant liquid-liquid phase separation and protein aggregation, which are central features of several neurodegenerative diseases. However, tools for quantifying crowding and aggregation remain limited. Here, we describe moxCRONOS, a Förster resonance energy transfer (FRET)-based biosensor that enables the quantitative measurement of macromolecular crowding and protein condensation. moxCRONOS retains the optical properties of the original CRONOS sensor but offers enhanced stability in oxidative environments, such as within the endoplasmic reticulum or under sodium arsenite treatment, allowing for direct comparison of crowding levels across organelles regardless of redox conditions. Moreover, when fused to dipeptide repeat proteins associated with C9ORF72-linked neurodegeneration, moxCRONOS detects aggregation-prone states-especially in cells expressing glycine-alanine (GA) repeats. Using fluorescence-activated cell sorting, we achieved sensitive and quantitative detection of heterogeneous high-FRET cell populations containing GA aggregates. FRET signal intensity increased upon treatment with a molecular crowding agent or a proteasome inhibitor. These findings establish moxCRONOS as a versatile biosensor for investigating both physiological macromolecular crowding and pathological protein aggregation, with significant potential for disease modeling and therapeutic screening.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.