{"title":"R-Loop调控中与长链非编码RNA TUG1相互作用蛋白的综合鉴定","authors":"Jingqi Xie, Miho M Suzuki, Kenta Iijima, Keiko Shinjo, Tatsunori Nishimura, Shinya Watanabe, Reiko Nakagawa, Tatsuo Ito, Yutaka Kondo","doi":"10.1093/jb/mvaf042","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) regulate a wide array of cellular processes through interactions with RNA-binding proteins (RBPs). Taurine Upregulated Gene 1 (TUG1) is an lncRNA that is overexpressed in many types of cancer and has been implicated in resolving R-loops, thereby maintaining genomic integrity. However, the full spectrum of its protein interactions and stress-responsive dynamics remains unclear. Here, we employed CRISPR-assisted RNA-protein interaction detection (CARPID) combined with mass spectrometry to comprehensively identify the interacting proteins of TUG1 in HEK293T cells. Using three distinct single-guide RNAs (sgRNAs) targeting different regions of TUG1, we consistently identified 17 TUG1-interacting proteins under basal conditions. Upon camptothecin (CPT) treatment, which induces R-loop formation, the number of associated proteins increased to 25. Under these stress conditions, the protein sets identified by each sgRNA showed greater overlap, suggesting a more conserved pattern of TUG1-protein interactions in response to R-loop accumulation. Many of these proteins are known R-loop-associated factors, including DEAD/DEAH-box RNA helicases, poly(ADP-ribose) polymerase 1 (PARP1) and heterogeneous nuclear ribonucleoproteins (HNRNPs), indicating that TUG1 engages R-loop regulatory machinery to maintain genome integrity. Our study provides new insights into lncRNA-mediated R-loop regulation and its role in genome maintenance.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"251-265"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive identification of proteins interacting with long non-coding RNA TUG1 in R-loop regulation.\",\"authors\":\"Jingqi Xie, Miho M Suzuki, Kenta Iijima, Keiko Shinjo, Tatsunori Nishimura, Shinya Watanabe, Reiko Nakagawa, Tatsuo Ito, Yutaka Kondo\",\"doi\":\"10.1093/jb/mvaf042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNAs (lncRNAs) regulate a wide array of cellular processes through interactions with RNA-binding proteins (RBPs). Taurine Upregulated Gene 1 (TUG1) is an lncRNA that is overexpressed in many types of cancer and has been implicated in resolving R-loops, thereby maintaining genomic integrity. However, the full spectrum of its protein interactions and stress-responsive dynamics remains unclear. Here, we employed CRISPR-assisted RNA-protein interaction detection (CARPID) combined with mass spectrometry to comprehensively identify the interacting proteins of TUG1 in HEK293T cells. Using three distinct single-guide RNAs (sgRNAs) targeting different regions of TUG1, we consistently identified 17 TUG1-interacting proteins under basal conditions. Upon camptothecin (CPT) treatment, which induces R-loop formation, the number of associated proteins increased to 25. Under these stress conditions, the protein sets identified by each sgRNA showed greater overlap, suggesting a more conserved pattern of TUG1-protein interactions in response to R-loop accumulation. Many of these proteins are known R-loop-associated factors, including DEAD/DEAH-box RNA helicases, poly(ADP-ribose) polymerase 1 (PARP1) and heterogeneous nuclear ribonucleoproteins (HNRNPs), indicating that TUG1 engages R-loop regulatory machinery to maintain genome integrity. Our study provides new insights into lncRNA-mediated R-loop regulation and its role in genome maintenance.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"251-265\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf042\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive identification of proteins interacting with long non-coding RNA TUG1 in R-loop regulation.
Long non-coding RNAs (lncRNAs) regulate a wide array of cellular processes through interactions with RNA-binding proteins (RBPs). Taurine Upregulated Gene 1 (TUG1) is an lncRNA that is overexpressed in many types of cancer and has been implicated in resolving R-loops, thereby maintaining genomic integrity. However, the full spectrum of its protein interactions and stress-responsive dynamics remains unclear. Here, we employed CRISPR-assisted RNA-protein interaction detection (CARPID) combined with mass spectrometry to comprehensively identify the interacting proteins of TUG1 in HEK293T cells. Using three distinct single-guide RNAs (sgRNAs) targeting different regions of TUG1, we consistently identified 17 TUG1-interacting proteins under basal conditions. Upon camptothecin (CPT) treatment, which induces R-loop formation, the number of associated proteins increased to 25. Under these stress conditions, the protein sets identified by each sgRNA showed greater overlap, suggesting a more conserved pattern of TUG1-protein interactions in response to R-loop accumulation. Many of these proteins are known R-loop-associated factors, including DEAD/DEAH-box RNA helicases, poly(ADP-ribose) polymerase 1 (PARP1) and heterogeneous nuclear ribonucleoproteins (HNRNPs), indicating that TUG1 engages R-loop regulatory machinery to maintain genome integrity. Our study provides new insights into lncRNA-mediated R-loop regulation and its role in genome maintenance.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.