Johannes H Jedrzejczyk, Frederik T Andersen, Jacob Petersen, Alexander Emil Kaspersen, Urjosee Sahana, Søren N Skov, Jens T Væsel, J Michael Hasenkam, Marcell J Tjørnild
{"title":"Mechanical and Geometric Characterization of a Novel 2-Ply Vacuum-Pressed Biological Scaffold Patch Design for Posterior Mitral Valve Reconstruction.","authors":"Johannes H Jedrzejczyk, Frederik T Andersen, Jacob Petersen, Alexander Emil Kaspersen, Urjosee Sahana, Søren N Skov, Jens T Væsel, J Michael Hasenkam, Marcell J Tjørnild","doi":"10.1007/s12265-024-10572-0","DOIUrl":"https://doi.org/10.1007/s12265-024-10572-0","url":null,"abstract":"<p><p>To assess the mechanical properties of small intestinal submucosal extracellular matrix (SIS-ECM) iterations and choose the optimal version for evaluating functional geometrics after posterior mitral valve reconstruction. Four SIS-ECM versions (2- and 4-ply vacuum-pressed and lyophilized) underwent uniaxial tensile testing. A posterior mitral valve reconstruction patch was developed based on MRI scans (n = 5). Posterior mitral valve reconstruction using 2-ply vacuum-pressed SIS-ECM was performed (n = 7), and geometrics were evaluated using a modified left heart simulator. The vacuum-pressed iterations displayed superior maximum stress values compared to lyophilized (2-ply: median [IQR], 15.8 [15.2-19.0] vs 7.9 [7.3-8.3] MPa, p < 0.001; 4-ply: median (IQR), 15.8 -[14.6-22.0] vs 7.9 [7.6-8.4] MPa). All reconstructed valves were competent with preserved total leaflet area, but individual leaflet segment areas were redistributed. Posterior mitral valve reconstruction with our 2-ply vacuum-pressed SIS-ECM patch design was feasible in vitro. Further in vivo evaluation is warranted.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongna Fu, Yuanting Zhu, Luyang Lin, Peng Jiang, Guoyi Cai, Lijin Zeng, Xinyu Li, Yuchun Zhang, Chunhao Li, Hong Zhan, Bo Zhang, Zhen Yang
{"title":"Shorter Leukocyte Telomere Length Is Associated with Increased Major Adverse Cardiovascular Events or Mortality in Patients with Essential Hypertension.","authors":"Hongna Fu, Yuanting Zhu, Luyang Lin, Peng Jiang, Guoyi Cai, Lijin Zeng, Xinyu Li, Yuchun Zhang, Chunhao Li, Hong Zhan, Bo Zhang, Zhen Yang","doi":"10.1007/s12265-024-10558-y","DOIUrl":"https://doi.org/10.1007/s12265-024-10558-y","url":null,"abstract":"<p><p>The association between leukocyte telomere length (LTL) alteration and major adverse cardiovascular events (MACE) or mortality in patients with hypertension is still unclear. 20,034 patients with essential hypertension were enrolled from UK biobank. Multivariable COX regression models were performed to assess the association. LTL was shorter in hypertensive patients with MACE compared to those without MACE. Hypertensive patients in the lowest LTL quartile were at higher risk to develop MACE (adjusted HR 1.15 [95% CI 1.02-1.29], vs top LTL quartile, p-trend = 0.03). Similarly, shorter LTL was related with increased mortality (adjusted HR 1.18[95% CI 1.06-1.3], lowest vs top LTL quartile, p-trend < 0.001). This investigation demonstrated that shorter LTL is associated with increased risk of MACE or mortality in patients with essential hypertension, which indicates that LTL may be a potential predictor of prognosis or underlying therapeutic target for hypertension.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zui Liu, Yang Cao, Xiao-Long Liao, Zhi-Jun Ou, Zhi-Wei Mo, Yi-Fang Liu, Ya-Ting Chen, Ze-Long Liu, Jian-Jun Gao, Da-Sheng Ning, Yue-Ming Peng, Mary G Sorci-Thomas, Jing-Song Ou, Yan Li
{"title":"Apolipoprotein A-I Mimetic Peptide Restores VEGF-induced Angiogenesis in Hypercholesterolemic Ischemic Heart by Reducing HDL Proinflammatory Properties.","authors":"Zui Liu, Yang Cao, Xiao-Long Liao, Zhi-Jun Ou, Zhi-Wei Mo, Yi-Fang Liu, Ya-Ting Chen, Ze-Long Liu, Jian-Jun Gao, Da-Sheng Ning, Yue-Ming Peng, Mary G Sorci-Thomas, Jing-Song Ou, Yan Li","doi":"10.1007/s12265-024-10568-w","DOIUrl":"https://doi.org/10.1007/s12265-024-10568-w","url":null,"abstract":"<p><p>VEGF-induced angiogenesis is impaired in hypercholesterolemia. Previous studies showed that an apolipoprotein A-I(ApoA-I) mimetic peptide, D-4F, is able to reduce HDL proinflammatory index in hypercholesterolemia. Whether D-4F promotes angiogenesis in hypercholesterolemia remains unclear. Low-density lipoprotein receptor null (LDLr<sup>-/-</sup>) mice and LDLr<sup>-/-</sup>/ApoA-I<sup>-/-</sup> mice were fed with high-fat diet with or without D-4F (1mg/kg·d). C57BL/6 mice fed with normal diet served as control. The myocardial infarction was induced by ligation coronary artery, and the VEGFA-AAV 9 was injected in heart. The plasma HDL proinflammatory index, cardiac function, infarct size, and angiogenesis related signaling pathways were examined. The HDL proinflammatory index increases in hypercholesterolemic mice. VEGFA stimulates angiogenesis and improves cardiac function in ischemic heart of C57BL/6 mice, but not in hypercholesterolemic mice. D-4F reduces HDL proinflammatory index. D-4F combined with VEGFA stimulates the expression of CD31 and eNOS, activates ERK1/2, reduces infarct size, and improves cardiac function in ischemic heart in hypercholesterolemic LDLr<sup>-/-</sup> mice but not in hypercholesterolemic LDLr<sup>-/-</sup>/ApoA-I<sup>-/-</sup> mice. D-4F restores the VEGF-induced angiogenesis by reducing HDL proinflammatory properties in hypercholesterolemic ischemic heart.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Canonical Wnt-signaling Through GSK-3β in Arrhythmogenic Cardiomyopathy: Conservative or Progressive?","authors":"Brandon Shu Huang Low, Angeliki Asimaki","doi":"10.1007/s12265-024-10567-x","DOIUrl":"https://doi.org/10.1007/s12265-024-10567-x","url":null,"abstract":"<p><p>Arrhythmogenic cardiomyopathy is a primary myocardial disease and a major cause of sudden death in all populations of the world. Canonical Wnt signalling is a critical pathway controlling numerous processes including cellular differentiation, hypertrophy and development. GSK3β is a ubiquitous serine/threonine kinase, which acts downstream of Wnt to promote protein ubiquitination and proteasomal degradation. Several studies now suggest that inhibiting GSK3β can prevent and reverse key pathognomonic features of ACM in a range of experimental models. However, varying concerns are reported throughout the literature including the risk of paradoxical arrhythmias, cancer and off-target effects in upstream or downstream pathways. CLINICAL RELEVANCE: In light of the start of the phase 2 TaRGET clinical trial, designed to evaluate the potential therapeutic efficacy of GSK3β inhibition in patients with arrhythmogenic cardiomyopathy, this report aims to review the advantages and disadvantages of this strategy.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Lin, Jin Wei, Jiahong Xue, Gang Fan, Wenjing Zhu, Yanhe Zhu, Ruiyun Wu
{"title":"Drp1 Promotes Macrophage M1 Polarization and Inflammatory Response in Autoimmune Myocarditis by Driving Mitochondrial Fission.","authors":"Lin Lin, Jin Wei, Jiahong Xue, Gang Fan, Wenjing Zhu, Yanhe Zhu, Ruiyun Wu","doi":"10.1007/s12265-024-10570-2","DOIUrl":"https://doi.org/10.1007/s12265-024-10570-2","url":null,"abstract":"<p><p>Autoimmune myocarditis (AM) is characterized by an intricate inflammatory response within the myocardium. Dynamin-related protein 1 (Drp1), a pivotal modulator of mitochondrial fission, plays a role in the pathogenesis of various diseases. A myosin-induced experimental autoimmune myocarditis (EAM) mouse model was successfully established. Flow cytometry was employed to detect M1/M2-like macrophages. Mitochondrial fragmentation was assessed using Mito-Tracker Red CMXRos. Drp1 was upregulated and activated in EAM mice. Depletion of Drp1 was observed to mitigate inflammation, macrophage infiltration and M1 polarization within the cardiac tissue of EAM mice. In M1-like macrophages derived from the hearts of EAM mice, Drp1 was found to promote mitochondrial fission and diminish mitochondrial fusion. Furthermore, the depletion of Drp1 reduced the NF-κB-related pro-inflammatory response in EAM-associated M1-like macrophages. Drp1 drives mitochondrial fission in macrophages, driving their M1 polarization and the subsequent inflammatory response. Drp1 may represent an effective target for the prevention and treatment of AM.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Model for Predicting Risk Factors of Prolonged Length of Hospital Stay in Patients with Aortic Dissection: a Retrospective Clinical Study.","authors":"Luo Li, Yihuan Chen, Hui Xie, Peng Zheng, Gaohang Mu, Qian Li, Haoyue Huang, Zhenya Shen","doi":"10.1007/s12265-024-10565-z","DOIUrl":"https://doi.org/10.1007/s12265-024-10565-z","url":null,"abstract":"<p><p>The length of hospital stay (LOS) is crucial for assessing medical service quality. This study aimed to develop machine learning models for predicting risk factors of prolonged LOS in patients with aortic dissection (AD). The data of 516 AD patients were obtained from the hospital's medical system, with 111 patients in the prolonged LOS (> 30 days) group based on three quarters of the LOS in the entire cohort. Given the screened variables and prediction models, the XGBoost model demonstrated superior predictive performance in identifying prolonged LOS, due to the highest area under the receiver operating characteristic curve, sensitivity, and F1-score in both subsets. The SHapley Additive exPlanation analysis indicated that high density lipoprotein cholesterol, alanine transaminase, systolic blood pressure, percentage of lymphocyte, and operation time were the top five risk factors associated with prolonged LOS. These findings have a guiding value for the clinical management of patients with AD.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circulating Extracellular Vesicles from Heart Failure Patients Inhibit Human Cardiomyocyte Activities.","authors":"Ke Zhen, Xiaojuan Wei, Zelun Zhi, Shiyu Shang, Shuyan Zhang, Yilu Xu, Xiaochuan Fu, Linjia Cheng, Jing Yao, Yue Li, Xia Chen, Pingsheng Liu, Hongchao Zhang","doi":"10.1007/s12265-024-10571-1","DOIUrl":"https://doi.org/10.1007/s12265-024-10571-1","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been implicated in cardiac remodeling during heart failure (HF). However, the role of circulating EVs (CEVs) in the process of HF is poorly understood. To elucidate the molecular mechanism associated with CEVs in the context of HF, the proteome of 4D label-free EVs from plasma samples was identified. Among the identified proteins, 6 exhibited upregulation while 9 demonstrated downregulation in CEVs derived from HF patients (HCEVs) compared to healthy controls (NCEVs). Our results showed that up-regulated proteins mainly participate in the primary metabolic, glycerolipid metabolic processes, oxidation-reduction process, and inflammatory amplification. In contrast, the down-regulated proteins influenced cell development, differentiation, and proliferation. Compared to NCEVs, HCEVs significantly induced inflammation and triacylglycerol (TAG) accumulation in human cardiomyocytes (HCMs) in vitro. They also compromised their regenerative capacities, triggered endoplasmic reticulum (ER) stress and increased autophagy in HCMs. Further, HCEVs induced differentiation of human cardiac fibroblasts (HCFs), amplifying pro-inflammatory, and pro-fibrotic factors, and enhancing extracellular matrix deposition. Notably, HCEVs are also associated with an increase in the HF biomarker MMP9 within HCFs and demonstrate a negative correlation with autophagic flux. In conclusion, HCEVs appear pivotal in advancing HF via pathological cardiac remodeling.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induction of Controllable Vortical Flow in a Dual-Stenosis Aorta Model: A Replication of Disordered Eddies Flow in Aneurysms.","authors":"Zhijie Wang, Zonghan Lyu, Jingfeng Jiang","doi":"10.1007/s12265-024-10566-y","DOIUrl":"https://doi.org/10.1007/s12265-024-10566-y","url":null,"abstract":"<p><p>This paper presents a two-stenosis aorta model mimicking vortical flow in vascular aneurysms. More specifically, we propose to virtually induce two adjacent stenoses in the abdominal aorta to develop various vortical flow zones post stenoses. Computational fluid dynamics (CFD) simulations were conducted for the virtual two-stenosis model based on physiological and anatomical data (i.e., diameters, flow rate waveforms) from adult rabbits. The virtual model includes adult rabbits' infra-renal portion of the aorta and iliac arteries. 3D CFD simulations in five different dual-stenosis configurations were performed using a commercial CFD package (FLUENT). In-house software assessed the evolution of flow vortices. Notably, spatial-temporally averaged wall shear stress (STA-WSS) and oscillatory shear index (OSI), the total volume of vortex flow, the number of vortices, and the phase-to-phase overlap of vortex flow within each region were evaluated. In all models, we found consistent patterns of the vortex flow parameters, indicating that the adjacent stenoses induced three different hemodynamic zones, namely, stable vortical flow (after the first stenosis), transient vortical flow (after the second stenosis), and unstable vortical flow (further distal to the second stenosis). Also, different degrees of flow disturbance can be achieved in these three zones. It is significant to note that, although the 'dual-stenosis' geometry is completely hypothetical, it allows us to create various vortical flows in consecutive vessel segments for the first time. As a result, if implemented as a pre-clinical model, the proposed two-stenosis model offers an attractive, tunable environment to investigate the interplays between subject-specific hemodynamics and vascular remodeling. This aspect remains in our future directions.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henrik Stephan, Linda Grefen, Dirk Clevert, Meike Onkes, Jin Ning, Nikolaus Thierfelder, Petra Mela, Christian Hagl, Adrian Curta, Maximilian Grab
{"title":"4D-Flow MRI and Vector Ultrasound in the In-Vitro Evaluation of Surgical Aortic Heart Valves - a Pilot Study.","authors":"Henrik Stephan, Linda Grefen, Dirk Clevert, Meike Onkes, Jin Ning, Nikolaus Thierfelder, Petra Mela, Christian Hagl, Adrian Curta, Maximilian Grab","doi":"10.1007/s12265-024-10564-0","DOIUrl":"https://doi.org/10.1007/s12265-024-10564-0","url":null,"abstract":"<p><strong>Introduction: </strong>The aim of this study was the initial investigation of 4D-Flow MRI and Vector Ultrasound as novel imaging techniques in the in-vitro analysis of hemodynamics in anatomical models. Specifically, by looking at the hemodynamic performance of state-of-the-art surgical heart valves in a 3D-printed aortic arch.</p><p><strong>Methods: </strong>The mock circulatory loop simulated physiological, pulsatile flow. Two mechanical and three biological aortic valves prostheses were compared in a 3D-printed aortic arch. 4D magnetic resonance imaging and vector flow Doppler ultrasound served as imaging methods. Hemodynamic parameters such as wall shear stress, flow velocities and pressure gradients were analyzed.</p><p><strong>Results: </strong>The flow analysis revealed characteristic flow-patterns in the 3D-printed aortic arch. The blood-flow in the arch presented complex patterns, including the formation of helixes and vortices. Higher proximal peak velocities and lower flow volumes were found for biological valves.</p><p><strong>Conclusion: </strong>The mock circulatory loop in combination with modern radiological imaging provides a sufficient basis for the hemodynamic comparison of aortic valves.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maaike Wulfse, Mats T Vervoorn, Jantijn J G J Amelink, Elisa M Ballan, Saskia C A de Jager, Joost P G Sluijter, Pieter A Doevendans, Peter-Paul M Zwetsloot, Niels P Van der Kaaij
{"title":"Past Trends and Future Directions of Cardiac Regenerative Medicine - A Systematic Analysis of Clinical Trial Registries.","authors":"Maaike Wulfse, Mats T Vervoorn, Jantijn J G J Amelink, Elisa M Ballan, Saskia C A de Jager, Joost P G Sluijter, Pieter A Doevendans, Peter-Paul M Zwetsloot, Niels P Van der Kaaij","doi":"10.1007/s12265-024-10563-1","DOIUrl":"https://doi.org/10.1007/s12265-024-10563-1","url":null,"abstract":"<p><p>Cell therapy, gene therapy, and tissue engineering have been explored as potential strategies to repair or regenerate damaged cardiac tissue. Despite the presence of encouraging preclinical data, clinical trials of regenerative cardiac therapies have yielded mixed results. Our study aimed to investigate the fate of all registered clinical trials within regenerative cardiac medicine, with the purpose of exploring the potential role of publication bias (or trial-completion bias), how published and unpublished research affects the field, and to draw lessons and recommendations for future clinical trials. In this analysis, we show that only a third of all registered trials has yielded results and that a significant number of trials are not completed. Furthermore, we identified significant heterogeneity in study design, study phase, funding, specific therapies used, primary outcome measures and methods of outcome assessment. These observations might hinder the successful translation of cardiac regenerative therapies into clinical practice.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}