Xiang Huang, Xue Bai, Jing Yi, Tingju Hu, Li An, Hong Gao
{"title":"The activation of P38MAPK Signaling Pathway Impedes the Delivery of the Cx43 to the Intercalated Discs During Cardiac Ischemia-Reperfusion Injury.","authors":"Xiang Huang, Xue Bai, Jing Yi, Tingju Hu, Li An, Hong Gao","doi":"10.1007/s12265-024-10515-9","DOIUrl":"10.1007/s12265-024-10515-9","url":null,"abstract":"<p><p>Ischemic heart disease is caused by coronary artery occlusion. Despite the increasing number and success of interventions for restoring coronary artery perfusion, myocardial ischemia-reperfusion (I/R) injury remains a significant cause of morbidity and mortality worldwide. Inspired by the impact of I/R on the Cx43 trafficking to the intercalated discs (ICDs), we aim to explore the potential mechanisms underlying the downregulation of Cx43 in ICDs after myocardial I/R. Gene set enrichment analysis (GSEA), Western blotting, and immunofluorescence experiments showed that Myocardial I/R activated the P38MAPK signaling pathway and promoted microtubule depolymerization. Inhibition of P38MAPK signaling pathway activation attenuated I/R-induced microtubule depolymerization. The ability of SB203580 to recover the distribution of Cx43 and electrophysiological parameters in I/R myocardium depended on microtubule stability. Our study suggests that microtubule depolymerization caused by the activation of the P38MAPK signaling pathway is an important mechanism underlying the downregulation of Cx43 in ICDs after myocardial I/R.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1140-1154"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum.","authors":"Srinjay Mukhopadhyay, Prithvi Dixit, Najiyah Khanom, Gianluca Sanghera, Kathryn A McGurk","doi":"10.1007/s12265-024-10520-y","DOIUrl":"10.1007/s12265-024-10520-y","url":null,"abstract":"<p><p>Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1119-1139"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exosome is a Fancy Mobile Sower of Ferroptosis.","authors":"Qin Hou, Siyu Ouyang, Zhongcheng Xie, Yinling He, Yunong Deng, Jiamin Guo, Panpan Yu, Xiaoqian Tan, Wentao Ma, Pin Li, Jiang Yu, Qinger Mo, Zhixia Zhang, Dandan Chen, Xiaoyan Lin, Zhiyang Liu, Xi Chen, Tianhong Peng, Liang Li, Wei Xie","doi":"10.1007/s12265-024-10508-8","DOIUrl":"10.1007/s12265-024-10508-8","url":null,"abstract":"<p><p>Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1067-1082"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Yao, Yuxin Xie, Chaoquan Li, Wanting Liu, Guanghui Yi
{"title":"Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury.","authors":"Hui Yao, Yuxin Xie, Chaoquan Li, Wanting Liu, Guanghui Yi","doi":"10.1007/s12265-024-10523-9","DOIUrl":"10.1007/s12265-024-10523-9","url":null,"abstract":"<p><p>Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1106-1118"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kimberly K Lamberti, Efrat M Goffer, Elazer R Edelman, Steven P Keller
{"title":"Differential Effects of Pharmacologic and Mechanical Support on Right-Left Ventricular Coupling.","authors":"Kimberly K Lamberti, Efrat M Goffer, Elazer R Edelman, Steven P Keller","doi":"10.1007/s12265-024-10522-w","DOIUrl":"10.1007/s12265-024-10522-w","url":null,"abstract":"<p><strong>Background: </strong>Percutaneous ventricular assist devices are increasingly relied on to maintain perfusion for cardiogenic shock patients. Optimal medical management strategies however remain uncertain from limited understanding of interventricular effects. This study analyzed the effects of pharmacologic and left-sided mechanical support on right ventricular function.</p><p><strong>Methods: </strong>A porcine model was developed to assess biventricular function during bolus pharmacologic administration before and after left-sided percutaneous ventricular assist and in cardiogenic shock.</p><p><strong>Results: </strong>The presence of mechanical support increased right ventricular load and stress with respect to the left ventricle. This shifted and exaggerated the relative effects of commonly used vasoactive agents. Furthermore, induction of cardiogenic shock led to differential pulmonary vascular and right ventricular responses.</p><p><strong>Conclusions: </strong>Left ventricular ischemia and mechanical support altered interventricular coupling. Resulting impacts of pharmacologic agents indicate differential right heart responses and sensitivity to treatments and the need for further study to optimize biventricular function in shock patients.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1181-1192"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Liao, Tong Wang, Lu Zhang, Yan Wei, Xinrong Fan
{"title":"Protective Mechanisms of SGLTi in Ischemic Heart Disease.","authors":"Lei Liao, Tong Wang, Lu Zhang, Yan Wei, Xinrong Fan","doi":"10.1007/s12265-024-10513-x","DOIUrl":"10.1007/s12265-024-10513-x","url":null,"abstract":"<p><p>Ischemic heart disease (IHD) is a common clinical cardiovascular disease with high morbidity and mortality. Sodium glucose cotransporter protein inhibitor (SGLTi) is a novel hypoglycemic drug. To date, both clinical trials and animal experiments have shown that SGLTi play a protective role in IHD, including myocardial infarction (MI) and ischemia/reperfusion (I/R). The protective effects may be involved in mechanisms of energy metabolic conversion, anti-inflammation, anti-fibrosis, ionic homeostasis improvement, immune cell development, angiogenesis and functional regulation, gut microbiota regulation, and epicardial lipids. Thus, this review summarizes the above mechanisms and aims to provide theoretical evidence for therapeutic strategies for IHD.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1018-1035"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swetha N. Kempegowda, Kavya Sugur, Rajesh K. Thimmulappa
{"title":"Dysfunctional HDL Diagnostic Metrics for Cardiovascular Disease Risk Stratification: Are we Ready to Implement in Clinics?","authors":"Swetha N. Kempegowda, Kavya Sugur, Rajesh K. Thimmulappa","doi":"10.1007/s12265-024-10559-x","DOIUrl":"https://doi.org/10.1007/s12265-024-10559-x","url":null,"abstract":"<p>Epidemiological studies have revealed that patients with higher levels of high-density lipoprotein cholesterol (HDL-C) were more resistant to cardiovascular diseases (CVD), and yet targeting HDL for CVD prevention, risk assessment, and pharmacological management has not proven to be very effective. The mechanistic investigations have demonstrated that HDL exerts anti-atherogenic functions via mediating reverse cholesterol transport, antioxidant action, anti-inflammatory activity, and anti-thrombotic activity. Contrary to expectations, however, adverse cardiovascular events were reported in clinical trials of drugs that raised HDL levels. This has sparked a debate between HDL quantity and quality. Patients with atherosclerotic CVD are associated with dysfunctional HDL, and the degree of HDL dysfunction is correlated with the severity of the disease, independent of HDL-C levels. This growing body of evidence has underscored the need for integrating HDL functional assays in clinical practice for CVD risk management. Because HDL exerts diverse athero-protective functions, there is no single method for capturing HDL functionality. This review critically evaluates the various techniques currently being used for monitoring HDL functionality and discusses key structural changes in HDL indicative of dysfunctional HDL and the technical challenges that need to be addressed to enable the integration of HDL function-based metrics in clinical practice for CVD risk estimation and the development of newer therapies targeting HDL function.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":"12 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Eckstein, Hermann Körperich, Oliver M. Weber, Wolfgang Burchert, Volodymyr Pugachov, Oleksandra Demydiuk, Misagh Piran
{"title":"Assessment of CMR Feature-Tracking Age- and Sex-Dependent Right Ventricular Strain in a Healthy Caucasian Cohort","authors":"Jan Eckstein, Hermann Körperich, Oliver M. Weber, Wolfgang Burchert, Volodymyr Pugachov, Oleksandra Demydiuk, Misagh Piran","doi":"10.1007/s12265-024-10557-z","DOIUrl":"https://doi.org/10.1007/s12265-024-10557-z","url":null,"abstract":"<p>Right ventricular (RV) strain offers crucial diagnostic insights in cardiovascular and pulmonary disorders. Nonetheless, the absence of established reference values impedes its clinical implementation. Utilizing CMR-feature tracking, age- and gender-dependent RV strains were systematically assessed in 175 heart-healthy Caucasians, 97 females, median 32.5 years. RV global longitudinal strain (GLS) was greater in females than males (median -26.8% (-28.3;-24.1) vs. -24.4 ± 3.0%; p < 0.001), whereby radial and circumferential strain remained comparable. Age subgroups exhibited increased RV-GLS for group B (30–50 years) (-26.0 ± 3.1% vs. -24.4 ± 3.2%; p = 0.011) and group C (> 50 years) (-26.7 ± 2.3% vs. -24.4 ± 3.2%; p < 0.001) compared to group A (< 30 years). High intra-class correlation coefficients (ICC) were exhibited by intrarater variability (ICC = 0.86–0.95) and moderate levels for interrater variability (ICC = 0.50–0.73). CMR-feature tracking provides a fair quantification method of age- and gender-specific normal RV strain values, demonstrating that higher RV-GLS is linked to female gender and advancing age within a healthy Caucasian cohort.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Right-ventricular global longitudinal strain, assessed by cardiac MRI feature-tracking, increases with the female sex and advancing age within a Caucasian cohort of healthy subjects (N = 175)</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantin Yastrebov, Laurencie M. Brunel, Fiona C. Schnitzler, Lisa M. Partel, Hugh S. Paterson, Paul G. Bannon
{"title":"Pearls and Pitfalls of Epicardial Echocardiography for Implantation of Impella CP Devices in Ovine Models","authors":"Konstantin Yastrebov, Laurencie M. Brunel, Fiona C. Schnitzler, Lisa M. Partel, Hugh S. Paterson, Paul G. Bannon","doi":"10.1007/s12265-024-10555-1","DOIUrl":"https://doi.org/10.1007/s12265-024-10555-1","url":null,"abstract":"<p>The Impella CP is a percutaneously inserted temporary left ventricular assist device used in clinical practice and in translational research into cardiogenic shock, perioperative cardiac surgery, acute cardiac failure and mechanical circulatory support. Fluoroscopic guidance is usually used for insertion of an Impella, thus limiting insertion to within catheterization laboratories. Transthoracic, transoesophageal and intracardiac echocardiography have been reported to guide Impella CP implantation with identified specific limitations stemming from the surgical, anatomical and equipment factors. We conducted translational prospective descriptive feasibility investigation as a part of two other hemodynamic Impella studies. It showed the successful application of epicardial echocardiographic scanning for implantation of Impella CP devices in ovine models, from which details of the technique and identified pitfalls are described with practical solutions for future investigators and clinicians. Many described findings are relevant to any other echocardiographic techniques when adequate imaging of the Impella and relevant anatomical structures is achievable.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Wang, Chao Gao, Scott Lim, Rutao Wang, Cun-Jun Zhu, Yoshinobu Onuma, Yunbing Wang, Runlin Gao, Patrick W J C Serruys, Randall J Lee, Ling Tao
{"title":"Percutaneous Alginate Hydrogel Endomyocardial Injection with a Novel Dedicated Catheter Delivery System: An Animal Feasibility Study.","authors":"Bo Wang, Chao Gao, Scott Lim, Rutao Wang, Cun-Jun Zhu, Yoshinobu Onuma, Yunbing Wang, Runlin Gao, Patrick W J C Serruys, Randall J Lee, Ling Tao","doi":"10.1007/s12265-024-10497-8","DOIUrl":"10.1007/s12265-024-10497-8","url":null,"abstract":"<p><p>The objective of this preclinical study was to evaluate the feasibility and safety of transcatheter endocardial alginate hydrogel injection (TEAi) in a large animal model, utilizing the high-stiffness XDROP® alginate hydrogel in combination with the dedicated EndoWings® catheter-based system. All swine (n = 9) successfully underwent TEAi without complications. Acute results from a subset of animals (n = 5) demonstrated the ability of the catheter to access a wide range of endomyocardial areas and achieve consecutive circumferential hydrogel distribution patterns within the mid-left ventricular wall. Histological examinations at 6 months (n = 4) demonstrated that the XDROP® remained localized within the cardiac tissue. In addition, serial echocardiographic imaging showed that XDROP® had no adverse impacts on LV systolic and diastolic functions. In conclusion, this innovative combination technology has the potential to overcome the translational barriers related to alginate hydrogel delivery to the myocardium.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"842-850"},"PeriodicalIF":4.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}