{"title":"LACC1 Enhances Polyamine Immunometabolism in Inflammatory Macrophages to Inhibit Atherosclerosis Progression.","authors":"Jingyong Zhang, Yuan Xu, Zonglin Han, Bingqi Liu, Maohua Wang, Lili Bao, Yuxiang He","doi":"10.1007/s12265-024-10585-9","DOIUrl":"https://doi.org/10.1007/s12265-024-10585-9","url":null,"abstract":"<p><p>To explore the function and potential mechanism of laccase domain-containing 1 (LACC1) on atherosclerosis (AS). ApoE<sup>-/-</sup> mice feed with high-fat diet (HFD) were injected with adenovirus shLACC1 (Ad-shLACC1) or Ad-shNC via tail vein. LACC1 was highly expressed in macrophages of atherosclerotic plaque in ApoE<sup>-/-</sup> mice and ox-LDL-treated Raw264.7 macrophages. LACC1 silencing enhanced AS development and facilitated inflammation in mice. Then, we found that LACC1 silencing facilitated inflammation but repressed polyamine immunometabolism in ox-LDL-treated Raw264.7 macrophages. Through rescue experiments using ornithine or ODC1 inhibitor (DFMO), we further confirmed that LACC1 promoted polyamine immunometabolism to inhibit inflammation in ox-LDL-treated Raw264.7 macrophages. In addition, the observed LACC1 function was dependent on NOS2. In conclusion, we proved that the downregulation of LACC1 promoted AS progression via inhibiting polyamine immunometabolism in inflammatory macrophages, suggesting LACC1 may be a potential therapeutic target for AS.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144018724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of The Relationship Between Differential Small Molecule Peptides in Peripheral Blood and Arteriosclerosis in Patients with Essential Hypertension.","authors":"Yunfeng Fang, Jingwen Yue, Min Zhang, Li Jiang","doi":"10.1007/s12265-025-10616-z","DOIUrl":"https://doi.org/10.1007/s12265-025-10616-z","url":null,"abstract":"<p><p>This study investigated the association between serum small peptides and arteriosclerosis (AS) in hypertensive patients. Sixty hypertensive patients (with and without AS) and 30 healthy individuals were enrolled. Untargeted metabolomics identified 120 peptides in AS patients, 136 in hypertensive patients, and 59 shared peptides. LASSO regression identified key peptides differentiating hypertensive patients with AS from those without. Peptides like Thr-Ile, Phe-Asp-Lys, and Lys-Ile-Val-Lys were upregulated in AS, while others like Gln-Glu and Lys-Lys were higher in non-AS patients. The diagnostic model showed AUCs of 0.896 for AS and 0.909 for non-AS. Elevated levels of Lys-Ile-Val-Lys and Phe-Asp-Lys were linked to increased carotid intima-media thickness, indicating higher AS risk.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144016528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yating Zhou, Yanyu Chen, Yuting Cui, Ni Gan, Qiong Xiang, Man Li, Wen Zeng, Xi-Long Zheng, Xiaoyan Dai, Juan Peng, Zhihan Tang
{"title":"Inhibition of VSMC Ferroptosis Mitigates Pathological Vascular Remodeling: A Novel Therapeutic Strategy for Abdominal Aortic Aneurysm.","authors":"Yating Zhou, Yanyu Chen, Yuting Cui, Ni Gan, Qiong Xiang, Man Li, Wen Zeng, Xi-Long Zheng, Xiaoyan Dai, Juan Peng, Zhihan Tang","doi":"10.1007/s12265-025-10621-2","DOIUrl":"https://doi.org/10.1007/s12265-025-10621-2","url":null,"abstract":"<p><p>Ferroptosis plays a key role in abdominal aortic aneurysm (AAA) development. This study explores whether and how ferroptosis regulates AAA progression. Ferroptosis was confirmed in human AAA tissue. In vitro experiments with primary mouse vascular smooth muscle cells (VSMCs) and abdominal aortic rings revealed that angiotensin II (Ang II) triggered ferroptosis in VSMCs. Ferrostatin-1 (Fer-1), a potent ferroptosis inhibitor, effectively suppressed this effect. Additionally, the ferroptosis inducer erastin and Ang II can both promoted pathological remodeling of abdominal aortic rings, but Fer-1 significantly suppressed these effects. In AAA mouse model, Fer-1 treatment reduced AAA formation. Mechanistically, RNA-sequencing analysis revealed that Fer-1 regulates VSMC contractile function, suppresses inflammation, and mitigates extracellular matrix remodeling. These findings highlight the critical role of VSMC ferroptosis in AAA pathogenesis and demonstrate that ferroptosis inhibition effectively reduces pathological vascular remodeling, making it a promising therapeutic strategy for preventing AAA.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Su Chen, Gabriel Koh, Yak-Nam Wang, Ga Won Kim, Zorawar Singh, Adrienne Lehnert, Robert Miyaoka, Hitinder S Gurm, Adam D Maxwell
{"title":"Fracture and Fragmentation of Vascular Calcifications by Focused Ultrasound.","authors":"Lucas Su Chen, Gabriel Koh, Yak-Nam Wang, Ga Won Kim, Zorawar Singh, Adrienne Lehnert, Robert Miyaoka, Hitinder S Gurm, Adam D Maxwell","doi":"10.1007/s12265-025-10611-4","DOIUrl":"https://doi.org/10.1007/s12265-025-10611-4","url":null,"abstract":"<p><p>Peripheral artery disease results in ischemia necessitating interventions such as balloon angioplasty. However, calcified lesions resist balloon and stent expansion, leading to poor outcomes. We hypothesized that focused ultrasound can fracture vascular calcifications and enable balloon angioplasty. In a first experiment, focused ultrasound was applied to ex vivo human calcified plaque specimens to determine its effects based on micro-CT imaging. In a second experiment, ultrasound was applied to an in vitro phantom to evaluate whether the effects enable balloon expansion. Fractures, thinning, and disintegration of calcified sections were observed in 15 of 18 treated human plaque samples. Minor mechanical disruption to soft plaque was found in 33% of samples. In tissue phantoms, n = 10/10 samples were successfully expanded by a water-filled angioplasty balloon with ultrasound applied prior to or during expansion. No controls (n = 0/10) were expanded. These results indicate focused-ultrasound plaque fracture is feasible and may enhance balloon angioplasty.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144000973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wang, Ziyu Su, Ming Zhong, Xuanqin Wu, Liang Li, Hong Gu, Yunhan Sun, Jun Ji, Xingchun Peng
{"title":"A Metabolic Signature Specific to the Patients with Type 2 Diabetes and its Association with the Pathogenesis of Diabetic-Foot Syndrome.","authors":"Tao Wang, Ziyu Su, Ming Zhong, Xuanqin Wu, Liang Li, Hong Gu, Yunhan Sun, Jun Ji, Xingchun Peng","doi":"10.1007/s12265-025-10622-1","DOIUrl":"https://doi.org/10.1007/s12265-025-10622-1","url":null,"abstract":"<p><p>Oxidative stress and protein nonenzymatic glycation are key factors in diabetic-foot syndrome pathogenesis. Type 2 diabetes (T2DM) progression involves excessive gluconolactone (GDL) production, linked to endothelial injury and diabetic arteriosclerosis. This study explored GDL's role in diabetic-foot syndrome using high-performance liquid chromatography-tandem mass spectrometry to analyze sera from 75 T2DM patients (including 32 with diabetic-foot) and 36 healthy controls. GDL levels were significantly higher in T2DM patients and correlated with increased hemoglobin A1c glycation and reactive oxygen species production in endothelial cells, suggesting GDL's role in accelerating macrovascular arteriosclerosis and diabetic-foot syndrome. These findings highlight GDL's potential as a diagnostic biomarker and therapeutic target for diabetic macrovascular complications.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143994617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glycerophospholipid and Sphingosine- 1-phosphate Metabolism in Cardiovascular Disease: Mechanisms and Therapeutic Potential.","authors":"Huiru Tang, Chengxia Kan, Kexin Zhang, Sufang Sheng, Hongyan Qiu, Yujie Ma, Yuqun Wang, Ningning Hou, Jingwen Zhang, Xiaodong Sun","doi":"10.1007/s12265-025-10620-3","DOIUrl":"https://doi.org/10.1007/s12265-025-10620-3","url":null,"abstract":"<p><p>Cardiovascular disease remains a leading cause of mortality worldwide, driven by factors such as dysregulated lipid metabolism, oxidative stress, and inflammation. Recent studies highlight the critical roles of both glycerophospholipid and sphingosine- 1-phosphate metabolism in the pathogenesis of cardiovascular disorders. However, the contributions of glycerophospholipid-derived metabolites remain underappreciated. Glycerophospholipid metabolism generates bioactive molecules that contribute to endothelial dysfunction, lipid accumulation, and cardiac cell injury while also modulating inflammatory and oxidative stress responses. Meanwhile, sphingosine- 1-phosphate is a bioactive lipid mediator that regulates vascular integrity, inflammation, and cardiac remodeling through its G-protein-coupled receptors. The convergence of these pathways presents novel therapeutic opportunities, where dietary interventions such as omega- 3 polyunsaturated fatty acids and pharmacological targeting of sphingosine- 1-phosphate receptors could synergistically mitigate cardiovascular risk. This review underscores the need for further investigation into the interplay between glycerophospholipid metabolism and sphingosine- 1-phosphate signaling to advance targeted therapies for the prevention and management of cardiovascular disease.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144025421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Connecting the Dots: Stress Granule and Cardiovascular Diseases.","authors":"Gaowei Yang, Yiming Wang, Junfang Guo, Tao Rui","doi":"10.1007/s12265-025-10619-w","DOIUrl":"https://doi.org/10.1007/s12265-025-10619-w","url":null,"abstract":"<p><p>Stress granules (SGs) are membrane-less cytoplasmic assemblies composed of mRNAs and RNA-binding proteins (RBPs) that transiently form to cope with various cellular stressors by halting mRNA translation and, consequently, protein synthesis. SG formation plays a crucial role in regulating multiple cellular processes, including cellular senescence, inflammatory responses, and adaptation to oxidative stress under both physiological and pathological conditions. Dysregulation of SG assembly and disassembly has been implicated in the pathogenesis of various diseases, including cardiovascular diseases (CVDs), cancer, viral and bacterial infections, and degenerative diseases. In this review, we survey the key aspects of SGs biogenesis and biological functions, with a particular focus on their causal involvement in CVDs. Furthermore, we summarized several SG-modulating compounds and discussed the therapeutic potential of small molecules targeting SG-related diseases in clinical settings.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144009106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heidi S Lumish, Lorenzo R Sewanan, Lusha W Liang, Kohei Hasegawa, Mathew S Maurer, Muredach P Reilly, Yuichi J Shimada
{"title":"Comprehensive Plasma Proteomic Profiling Reveals Differentially Regulated Signaling Pathways Underlying Left Ventricular Hypertrophy Between Hypertrophic Cardiomyopathy and Aortic Stenosis.","authors":"Heidi S Lumish, Lorenzo R Sewanan, Lusha W Liang, Kohei Hasegawa, Mathew S Maurer, Muredach P Reilly, Yuichi J Shimada","doi":"10.1007/s12265-025-10618-x","DOIUrl":"https://doi.org/10.1007/s12265-025-10618-x","url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is the most common genetic myocardial disease, characterized by asymmetric left ventricular hypertrophy (LVH) due to sarcomeric mutations. Aortic stenosis (AS) results in concentric LVH, due to pressure overload. The aim of this study was to identify signaling pathways differentially regulated in HCM compared to AS, using plasma proteomic profiling. 76 HCM cases and 36 AS controls were matched by age and sex. A machine-learning (ML) model to predict HCM was built in the training set (70% cohort) and examined in the test set (30% cohort). Pathway analysis of proteins differentially expressed between HCM and AS was performed. The ML model accurately distinguished HCM from AS, with area under the receiver operating characteristic curve of 0.90 (95% CI: 0.79-1.00). Pathway analysis revealed differential regulation of Ras-MAPK, inflammatory and metabolic pathways. In conclusion, this study identified distinctive proteomic profiles and signaling pathways underlying LVH in HCM compared to AS.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143982261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhai Wang, Dexin Xu, Jian Ding, Yinping Pan, Fang Wang, Shu Su, Xia Peng, Shitong Zhang, Wenbin Zhang
{"title":"Nanotechnology Innovations in Myocardial Infarction: Diagnosis, Treatment and the Way Forward.","authors":"Wenhai Wang, Dexin Xu, Jian Ding, Yinping Pan, Fang Wang, Shu Su, Xia Peng, Shitong Zhang, Wenbin Zhang","doi":"10.1007/s12265-025-10614-1","DOIUrl":"https://doi.org/10.1007/s12265-025-10614-1","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a global health concern that necessitates continued advancements in diagnostic and therapeutic modalities. Nanotechnology facilitates prompt diagnosis and personalized treatment. This manuscript explicitly reviews the application of innovative methodologies for identifying cardiac biomarkers to facilitate the early diagnosis of MI and its clinical management. Nanoscale agents such as nanoparticles and nanosensors have been employed for this purpose. Technological advancements in medical imaging are revolutionizing therapeutic approaches while reducing morbidity and mortality typically associated with cardiac tissue injury. Besides all, applications of nanotechnology in therapeutics have proven extremely effective. The development of nanoparticle-based customized drug delivery systems will contribute to more effective treatments, fewer side effects, and improved therapeutic outcomes. Biomaterials and nanoscale surgical technologies may benefit patients with MI by promoting tissue regeneration and repair. This manuscript also investigates the ethical and legal limitations that could prevent seamless incorporation of nanotechnology into clinical practice.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144020235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Davari, Mahmoud Khansari, Sahar Hosseini, Reza Morovatshoar, Alireza Azani, Seyedeh Tarlan Mirzohreh, Mohammadjavad Ashrafi Mahabadi, Moein Ghasemi, Mohammad Saeed Soleimani Meigoli, Sima Foroughi Nematollahi, Sina Pourranjbar, Qumars Behfar, Mandana Baghdadi, Ahmad Mir Hosseini
{"title":"The Impact of Opioids on Epigenetic Modulation in Myocardial Ischemia and Reperfusion Injury: Focus on Non-coding RNAs.","authors":"Mohsen Davari, Mahmoud Khansari, Sahar Hosseini, Reza Morovatshoar, Alireza Azani, Seyedeh Tarlan Mirzohreh, Mohammadjavad Ashrafi Mahabadi, Moein Ghasemi, Mohammad Saeed Soleimani Meigoli, Sima Foroughi Nematollahi, Sina Pourranjbar, Qumars Behfar, Mandana Baghdadi, Ahmad Mir Hosseini","doi":"10.1007/s12265-025-10609-y","DOIUrl":"https://doi.org/10.1007/s12265-025-10609-y","url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury (IRI) is a major issue in cardiovascular medicine, marked by tissue damage from the restoration of blood flow after ischemia. Opioids, known for their pain-relieving properties, have emerged as potential cardioprotective agents in IRI. Recent research suggests opioids influence epigenetic mechanisms-such as histone modifications and non-coding RNAs (ncRNAs)-which are essential for regulating gene expression and cellular responses during myocardial IRI. This review delves into how opioids like remifentanil affect histone modifications, DNA methylation, and ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Remifentanil postconditioning (RPC) reduces apoptosis in cardiomyocytes through histone deacetylation, specifically downregulating histone deacetylase 3 (HDAC3). Similarly, opioids impact miRNAs such as miR- 206 - 3p and miR- 320 - 3p, and lncRNAs like TINCR and UCA1, which influence apoptosis, inflammation, and oxidative stress. Understanding these interactions highlights the potential for opioid-based therapies in mitigating IRI-induced myocardial damage.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}