Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Challenges and improvements in multi-layer mucosa-adhesive films for oral diseases treatment and prognosis. 用于口腔疾病治疗和预后的多层粘膜粘合薄膜的挑战与改进。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-07 DOI: 10.1080/09205063.2024.2422213
Ruohan Zhai, Yaxian Liang, Ruijianghan Shi, Huixu Xie
{"title":"Challenges and improvements in multi-layer mucosa-adhesive films for oral diseases treatment and prognosis.","authors":"Ruohan Zhai, Yaxian Liang, Ruijianghan Shi, Huixu Xie","doi":"10.1080/09205063.2024.2422213","DOIUrl":"https://doi.org/10.1080/09205063.2024.2422213","url":null,"abstract":"<p><p>Due to the complexity of oral physiology and pathology, the treatment of oral diseases faces multiple and complex clinical requirements. Mucosa-adhesive films (MAFs) with a single layer have demonstrated considerable potential in delivering therapeutic bioactive ingredients directly to the site of oral diseases. However, their functions are often hindered by certain factors such as limited loading capacity, poor site specificity, and sensitivity to mechanical stimuli. To overcome these limitations, the development of multi-layer MAFs has become a focal point for recent research. This involves the improvement of construction methods for multi-layer MAFs to minimize potential health risks from residual solvents, and conducting comprehensive <i>in vivo</i> studies to evaluate their safety and therapeutic efficacy more accurately, thus paving the way for their commercialization. Additionally, the exploration of multi-layer MAFs as personalized drug delivery systems could further broaden their application prospect. Precisely, multi-layer MAFs compensate for the shortcomings of current therapeutic strategies for oral diseases to a great extent, indicating a promising future in the market.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun zinc oxide nanoscaffolds: a targeted and selective anticancer approach. 电纺氧化锌纳米支架:一种靶向性和选择性抗癌方法。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-07 DOI: 10.1080/09205063.2024.2422698
Zeinab A S Said, Haitham S Mohammed, Sara Ibrahim, Hanan H Amer
{"title":"Electrospun zinc oxide nanoscaffolds: a targeted and selective anticancer approach.","authors":"Zeinab A S Said, Haitham S Mohammed, Sara Ibrahim, Hanan H Amer","doi":"10.1080/09205063.2024.2422698","DOIUrl":"https://doi.org/10.1080/09205063.2024.2422698","url":null,"abstract":"<p><p>This study aims to prepare, characterize, and evaluate zinc oxide nanoscaffolds (ZnO NSs) as a potential anticancer drug that selectively targets malignant cells while remaining non-toxic to normal cells. Electrospun NSs were fabricated and loaded with varying concentrations of ZnO nanoparticles (NPs). The uniform morphology of the fabricated samples was confirmed through Field Emission Scanning Electron Microscope (FESEM) imaging. Elemental composition was investigated using Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR), and X-ray diffraction (XRD) analyses. Biocompatibility and cytotoxicity were assessed using the (3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) (MTT) assay and flow cytometry. The water uptake and degradation properties of the electrospun NSs were also examined. Furthermore, a cumulative release profile was generated to assess the release behavior of ZnO NSs. The prepared ZnO NSs demonstrated negligible toxicity toward normal human dermal cells. Conversely, the four used concentrations of ZnO NSs displayed substantial cytotoxicity and induced apoptosis in various cancer cell lines. The observed effects were concentration-dependent. Notably, ZnO NSs 8% exhibited the most significant reduction in cell viability against the MCF7 cell line. The findings from this study indicate the potential of ZnO NSs as an effective anticancer agent, with the ZnO NSs 8% demonstrating the most pronounced impact. This research introduces a novel application of electrospun zinc oxide nanoscaffolds, demonstrating their capacity for selective anticancer activity, particularly against breast carcinoma, while preserving normal cell viability. The study presents a significant advancement in the use of nanomaterial for targeted cancer therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inulin: a multifaceted ingredient in pharmaceutical sciences. 菊粉:制药科学中的一种多元成分。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-07-29 DOI: 10.1080/09205063.2024.2384276
Ruchi Tiwari, Pranshul Sethi, Shashi Ravi Suman Rudrangi, Pavan Kumar Padarthi, Vinod Kumar, Samatha Rudrangi, Krishna Vaghela
{"title":"Inulin: a multifaceted ingredient in pharmaceutical sciences.","authors":"Ruchi Tiwari, Pranshul Sethi, Shashi Ravi Suman Rudrangi, Pavan Kumar Padarthi, Vinod Kumar, Samatha Rudrangi, Krishna Vaghela","doi":"10.1080/09205063.2024.2384276","DOIUrl":"10.1080/09205063.2024.2384276","url":null,"abstract":"<p><p>Inulin, a naturally occurring polysaccharide derived from plants such as chicory root, has emerged as a significant ingredient in pharmaceutical sciences due to its diverse therapeutic and functional properties. This review explores the multifaceted applications of inulin, focusing on its chemical structure, sources, and mechanisms of action. Inulin's role as a prebiotic is highlighted, with particular emphasis on its ability to modulate gut microbiota, enhance gut health, and improve metabolic processes. The review also delves into the therapeutic applications of inulin, including its potential in managing metabolic health issues such as diabetes and lipid metabolism, as well as its immune-modulating properties and benefits in gastrointestinal health. Furthermore, the article examines the incorporation of inulin in drug formulation and delivery systems, discussing its use as a stabilizing agent and its impact on enhancing drug bioavailability. Innovative inulin-based delivery systems, such as nanoparticles and hydrogels, are explored for their potential in controlled release formulations. The efficacy of inulin is supported by a review of clinical studies, underscoring its benefits in managing conditions like diabetes, cardiovascular health, and gastrointestinal disorders. Safety profiles, regulatory aspects, and potential side effects are also addressed. This comprehensive review concludes with insights into future research directions and the challenges associated with the application of inulin in pharmaceutical sciences.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2570-2595"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oil/water (O/W) nanoemulsions developed from essential oil extracted from wildly growing Calotropis gigantea (Linn.) Aiton F.: synthesis, characterization, stability and evaluation of anti-cancerous, anti-oxidant, anti-inflammatory and anti-diabetic activities. 从野外生长的菖蒲(Calotropis gigantea (Linn.) Aiton F.)中提取的精油开发的油/水(O/W)纳米乳剂:合成、表征、稳定性以及抗癌、抗氧化、抗炎和抗糖尿病活性评估。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-08-13 DOI: 10.1080/09205063.2024.2384801
Arun Dev Sharma, Ravindresh Chhabra, Jyoti Rani, Amrita Chauhan, Inderjeet Kaur, Gaurika Kapoor
{"title":"Oil/water (O/W) nanoemulsions developed from essential oil extracted from wildly growing <i>Calotropis gigantea</i> (Linn.) Aiton F.: synthesis, characterization, stability and evaluation of anti-cancerous, anti-oxidant, anti-inflammatory and anti-diabetic activities.","authors":"Arun Dev Sharma, Ravindresh Chhabra, Jyoti Rani, Amrita Chauhan, Inderjeet Kaur, Gaurika Kapoor","doi":"10.1080/09205063.2024.2384801","DOIUrl":"10.1080/09205063.2024.2384801","url":null,"abstract":"<p><p><i>Calotropis gigantea</i> essential oil is utilized in outmoded medicine, therapeutics, and the cosmetic industries. However, the extreme volatility, oxidation susceptibility, and instability of this oil restricts its application. Thus, encapsulation is a more effective method of shielding this oil from unfavorable circumstances. The creation of oil/water (O/W) nanoemulsions based on <i>Calotropis gigantea</i> essential oil (CEO), known as CNE (<i>Calotropis gigantea</i> essential oil nanoemulsions), and an assessment of its biological potential were the goals of this work. UV, fluorescence, and FT-IR methods were used for physiological characterization. Biological activities, including anti-inflammatory, anti-diabetic, and anti-cancer effects. Studies on the pharmacokinetics of CNE were conducted. CNEs encapsulation efficiency was found to be 92%. The CNE nanoemulsions had a spherical shape with polydispersity index of 0.531, size of 200 nm, and a zeta potential of -35.9 mV. Even after being stored at various temperatures for 50 days, CNE nanoemulsions remained stable. Numerous tests were used to determine the antioxidant capacity of CNE, and the following IC50 values (µl/mL) were found: iron chelating assay: 18, hydroxyl radical scavenging: 37, and nitric oxide radical scavenging activity: 58. The percentage of HeLa cells that remained viable after being treated with CNE was 41% at a higher dose of 1 µl. CNE inhibited α-amylase in a dose-dependent manner, with 72% inhibition at its higher dose of 250 µL. Research on the kinetics of drugs showed that nanoemulsions showed Higuchi pattern. This research showed potential use of <i>Calotropis gigantea</i> oil-based nanoemulsions in the food, cosmetic, and pharmaceutical industries.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2506-2527"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun PCL/PVA/PHMB nanofibers incorporating Ziziphus jujuba fruit extract as promising wound dressings with potent antibacterial and antidiabetic properties. 含有酸枣果提取物的电纺 PCL/PVA/PHMB 纳米纤维是一种前景看好的伤口敷料,具有强大的抗菌和抗糖尿病特性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-08-01 DOI: 10.1080/09205063.2024.2384299
Shohreh Fahimirad, Parastu Satei, Amirhossein Latifi, Saeed Changizi-Ashtiyani, Mohsen Bahrami, Hamid Abtahi
{"title":"Electrospun PCL/PVA/PHMB nanofibers incorporating <i>Ziziphus jujuba</i> fruit extract as promising wound dressings with potent antibacterial and antidiabetic properties.","authors":"Shohreh Fahimirad, Parastu Satei, Amirhossein Latifi, Saeed Changizi-Ashtiyani, Mohsen Bahrami, Hamid Abtahi","doi":"10.1080/09205063.2024.2384299","DOIUrl":"10.1080/09205063.2024.2384299","url":null,"abstract":"<p><p>This investigation examined the potential antibacterial and antidiabetic effects of wound dressings created using electrospun nanofibers containing <i>Ziziphus jujuba</i> fruit extract (ZJ). These nanofibers were composed of a combination of Polycaprolactone (PCL), Polyvinyl Alcohol (PVA), and Polyhexamethylene Biguanide (PHMB). The process of creating these nanofibers involved electrospinning. The nanofiber products, which included PCL, PCL/PVA, PCL/PVA/ZJ, PCL/PVA/PHMB, and PCL/PVA/PHMB/ZJ, underwent a morphology, physicochemical, and biological assessment. Incorporating PHMB into the nanofibers enhanced the antibacterial properties, effectively preventing bacterial infections in wounds. Furthermore, including ZJ fruit extract in the nanofibers provided antidiabetic properties, making these dressings suitable for diabetic patients. The PCL/PVA/PHMB/ZJ combination exhibited exceptional healing capabilities and superior antibacterial efficiency in MRSA-infected wounds. The histological assay confirmed complete wound healing by day 14, accompanied by reduced inflammation. Based on these findings, using PCL/PVA/PHMB/ZJ as innovative wound dressings is recommended, as they can expedite wound healing while offering significant antidiabetic and antibacterial features. Ultimately, these electrospun nanofibers possess the potential to serve as advanced wound dressings with enhanced antibacterial and anti-diabetes properties.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2484-2505"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the wound healing activity of phytosomal gel of Annona squamosa and Cinnamomum tamala leaves ethanolic extracts with antioxidant and antimicrobial activities in S aureus infected excision wound model. 在金黄色葡萄球菌感染的切除伤口模型中,探索植物体凝胶的抗氧化和抗菌活性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-07-27 DOI: 10.1080/09205063.2024.2382540
Azhar Danish Khan, Mukesh Kr Singh, Pallavi Manish Lavhale, Mohd Yasir, Lubhan Singh
{"title":"Exploring the wound healing activity of phytosomal gel of <i>Annona squamosa</i> and <i>Cinnamomum tamala</i> leaves ethanolic extracts with antioxidant and antimicrobial activities in <i>S aureus</i> infected excision wound model.","authors":"Azhar Danish Khan, Mukesh Kr Singh, Pallavi Manish Lavhale, Mohd Yasir, Lubhan Singh","doi":"10.1080/09205063.2024.2382540","DOIUrl":"10.1080/09205063.2024.2382540","url":null,"abstract":"<p><p>Wound healing is a natural process but it is impaired in certain conditions like age, stress, health, immunity status and microbial infection. Particularly in cases of chronic wounds, infection is nearly often the main and unavoidable obstacle to wound healing. For this purpose, leaves of <i>Annona squamosa</i> and <i>Cinnamomum tamala</i> were selected based on their ethnopharmacological uses and reported pharmacological activities. The ethanolic extracts of both plant parts i.e. ethanolic extracts of <i>Annona squamosa</i> (ASEE) and <i>Cinnamomum tamala</i> (CTEE) were evaluated for their antioxidant and antimicrobial activities individually as well as in 1:1 combination as Polyherbal Ethanolic extract (PHEE). In our previous work both these ethanolic extracts were combined and phytosomes were prepared by thin layer hydration method and optimized for vesicle size and entrapment efficiency. The phytosomes were then incorporated into Carbopol gel matrix. In this present study the selected phytosomal gel was tested in two different concentrations (2% and 5%) for <i>in vivo</i> wound healing activity using <i>S. aureus</i> infected excision wound model. The various parameters examined were percentage wound contraction, epithelization period, bacteriological quantification, biochemical parameters like Superoxide dismutase (SOD), Catalase and hydroxyproline. The PHEE exhibited synergistic antioxidant activity. The PHEE also showed enhanced antimicrobial activity against bacteria namely gram-positive <i>S. aureus,</i> gram-negative <i>E. Coli.</i> The phytosomal gel showed increased wound contraction, reduced time of epithelization, increased hydroxyproline content, increased levels of SOD and Catalase enzymes and reduced bacterial load when compared with Povidone iodine ointment as standard in <i>S. aureus</i> infected excision wound model.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2447-2468"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating. 通过在聚多巴胺涂层上固定 FXa 抑制剂制备抗凝聚醚砜膜。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-07-31 DOI: 10.1080/09205063.2024.2384275
Chengzhi Wang, Dayang Jiang, Huipeng Ge, Jianping Ning, Xia Li, Mingmei Liao, Xiangcheng Xiao
{"title":"Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating.","authors":"Chengzhi Wang, Dayang Jiang, Huipeng Ge, Jianping Ning, Xia Li, Mingmei Liao, Xiangcheng Xiao","doi":"10.1080/09205063.2024.2384275","DOIUrl":"10.1080/09205063.2024.2384275","url":null,"abstract":"<p><p>Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban<b>-</b>modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2469-2483"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration. 改善用于髌骨软骨组织再生的生物打印 PCL-精氨酸-软骨细胞支架的生物和机械性能。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI: 10.1080/09205063.2024.2385182
Hosein Rostamani, Omid Fakhraei, Narges Kelidari, Fatemeh Toosizadeh Khorasani
{"title":"Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration.","authors":"Hosein Rostamani, Omid Fakhraei, Narges Kelidari, Fatemeh Toosizadeh Khorasani","doi":"10.1080/09205063.2024.2385182","DOIUrl":"10.1080/09205063.2024.2385182","url":null,"abstract":"<p><p>In this study, polycaprolactone (PCL) scaffolds have been employed as structural framework scaffolds for patellofemoral cartilage tissue regeneration. The biomechanical and biological properties of different scaffolds were investigated by varying alginate concentrations and the number of scaffold layers. Patellofemoral cartilage defects result in knee pain and reduced mobility, and they are usually treated with conventional methods, often with limited success. Generally, tissue-engineered PCL-alginate scaffolds fabricated by bioprinting technology show promise for enhanced cartilage regeneration due to the biocompatibility and mechanical stability of PCL. In addition, alginate is known for its cell encapsulation capabilities and for promoting cell viability. Biological and morphological assessments, utilizing water contact angle, cell adhesion tests, MTT assays, and scanning electron microscopy (SEM), informed the selection of the optimized scaffold. Comparative analyses between the initial optimal scaffolds with the same chemical composition also included flexural and compression tests and fracture surface observations using SEM. The controlled integration of PCL and alginate offers a hybrid approach, that assembles the mechanical strength of PCL and the bioactive properties of alginate for tissue reconstruction potential. This study aims to identify the most effective scaffold composition for patellofemoral articular cartilage tissue engineering, emphasizing cell viability, structural morphology, and mechanical integrity. The results showed that the optimum biomechanical and biological properties of scaffolds were obtained with a 10% alginate concentration in the monolayer of PCL structure. The findings contribute to regenerative medicine by advancing the understanding of functional tissue constructs, bringing us closer to addressing articular cartilage defects and related clinical challenges.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2549-2569"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. 关于使用可注射壳聚糖微凝胶修复骨软骨组织的全面综述。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-26 DOI: 10.1080/09205063.2024.2419715
Sarah Salehi
{"title":"A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair.","authors":"Sarah Salehi","doi":"10.1080/09205063.2024.2419715","DOIUrl":"https://doi.org/10.1080/09205063.2024.2419715","url":null,"abstract":"<p><p>Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets <i>in vivo</i>. Injectability is a key parameter for <i>in situ</i> forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. 基于卵磷脂的混合聚合物胶束用于提高姜黄素对金黄色葡萄球菌的活性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-26 DOI: 10.1080/09205063.2024.2421089
Yunjing Jia, Yuli Li, Mingzhu Wang, Fuyou Wang, Qingmin Liu, Zhimei Song
{"title":"Lecithin-based mixed polymeric micelles for activity improvement of curcumin against <i>Staphylococcus aureus</i>.","authors":"Yunjing Jia, Yuli Li, Mingzhu Wang, Fuyou Wang, Qingmin Liu, Zhimei Song","doi":"10.1080/09205063.2024.2421089","DOIUrl":"https://doi.org/10.1080/09205063.2024.2421089","url":null,"abstract":"<p><p>Considering cellular uptake promotion of lecithin and high expression of phospholipase in <i>S. aureus</i>, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti<i>-S. aureus</i> activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-<i>S. aureus</i> activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信