明胶改性季铵基非异氰酸酯聚氨酯/硅氧烷抗菌创面敷料膜。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Parsa Mousavi, Hamid Yeganeh, Ismail Omrani, Masoud Babaahmadi
{"title":"明胶改性季铵基非异氰酸酯聚氨酯/硅氧烷抗菌创面敷料膜。","authors":"Parsa Mousavi, Hamid Yeganeh, Ismail Omrani, Masoud Babaahmadi","doi":"10.1080/09205063.2025.2518305","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents antibacterial wound dressing membranes based on a nonisocyanate polyurethane-siloxane framework. These membranes protect wounded skin by providing mechanical strength, maintaining a moist environment, and ensuring hygiene through chemically anchored antibacterial moieties. Methoxysilane-functionalized soybean oil-based polyhydroxyurethane with quaternary ammonium groups was synthesized and combined with GPTMS and TEOS. Hydrolysis-condensation reactions formed membranes with siloxane domains and pendant epoxy groups. Gelatin was incorporated to enhance biocompatibility and mechanical strength. The resulting films demonstrated tensile strengths of 7.9 MPa (dry) and 0.61 MPa (swelled). Fluid handling capacities were 2.66-2.81 g/10 cm<sup>2</sup>/day (serum) and 0.79-1.10 g/10 cm<sup>2</sup>/day (serum vapor), making them suitable for light to moderately exuding wounds. Cytocompatibility was confirmed by MTT assays, showing over 80% fibroblast viability on dressings and over 90% viability in leachate-containing media. The blood compatibility of the dressing was confirmed by standard methods. The dressings also exhibited strong antibacterial activity, with 82% killing of Staphylococcus aureus and 52% killing of Escherichia coli. These results highlight the potential of these membranes for advanced wound care applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gelatin modified nonisocyanate polyurethane/siloxane functionalized with quaternary ammonium groups as antibacterial wound dressing membrane.\",\"authors\":\"Parsa Mousavi, Hamid Yeganeh, Ismail Omrani, Masoud Babaahmadi\",\"doi\":\"10.1080/09205063.2025.2518305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents antibacterial wound dressing membranes based on a nonisocyanate polyurethane-siloxane framework. These membranes protect wounded skin by providing mechanical strength, maintaining a moist environment, and ensuring hygiene through chemically anchored antibacterial moieties. Methoxysilane-functionalized soybean oil-based polyhydroxyurethane with quaternary ammonium groups was synthesized and combined with GPTMS and TEOS. Hydrolysis-condensation reactions formed membranes with siloxane domains and pendant epoxy groups. Gelatin was incorporated to enhance biocompatibility and mechanical strength. The resulting films demonstrated tensile strengths of 7.9 MPa (dry) and 0.61 MPa (swelled). Fluid handling capacities were 2.66-2.81 g/10 cm<sup>2</sup>/day (serum) and 0.79-1.10 g/10 cm<sup>2</sup>/day (serum vapor), making them suitable for light to moderately exuding wounds. Cytocompatibility was confirmed by MTT assays, showing over 80% fibroblast viability on dressings and over 90% viability in leachate-containing media. The blood compatibility of the dressing was confirmed by standard methods. The dressings also exhibited strong antibacterial activity, with 82% killing of Staphylococcus aureus and 52% killing of Escherichia coli. These results highlight the potential of these membranes for advanced wound care applications.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2518305\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2518305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了基于非异氰酸酯聚氨酯-硅氧烷框架的抗菌伤口敷料膜。这些膜通过提供机械强度来保护受伤的皮肤,保持潮湿的环境,并通过化学固定的抗菌部分确保卫生。合成了甲氧基硅烷功能化大豆油基季铵基聚羟基聚氨酯,并与GPTMS和TEOS结合。水解缩合反应形成具有硅氧烷结构域和悬垂环氧基团的膜。明胶加入,以提高生物相容性和机械强度。所得薄膜的抗拉强度为7.9 MPa(干燥)和0.61 MPa(膨胀)。液体处理能力为2.66 ~ 2.81 g/10 cm2/天(血清)和0.79 ~ 1.10 g/10 cm2/天(血清蒸气),适用于轻度至中度渗出伤口。细胞相容性通过MTT试验证实,成纤维细胞在敷料上的存活率超过80%,在含渗滤液的培养基上的存活率超过90%。采用标准方法测定敷料的血液相容性。该敷料还表现出较强的抗菌活性,金黄色葡萄球菌和大肠杆菌的杀伤率分别为82%和52%。这些结果突出了这些膜在高级伤口护理应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gelatin modified nonisocyanate polyurethane/siloxane functionalized with quaternary ammonium groups as antibacterial wound dressing membrane.

This work presents antibacterial wound dressing membranes based on a nonisocyanate polyurethane-siloxane framework. These membranes protect wounded skin by providing mechanical strength, maintaining a moist environment, and ensuring hygiene through chemically anchored antibacterial moieties. Methoxysilane-functionalized soybean oil-based polyhydroxyurethane with quaternary ammonium groups was synthesized and combined with GPTMS and TEOS. Hydrolysis-condensation reactions formed membranes with siloxane domains and pendant epoxy groups. Gelatin was incorporated to enhance biocompatibility and mechanical strength. The resulting films demonstrated tensile strengths of 7.9 MPa (dry) and 0.61 MPa (swelled). Fluid handling capacities were 2.66-2.81 g/10 cm2/day (serum) and 0.79-1.10 g/10 cm2/day (serum vapor), making them suitable for light to moderately exuding wounds. Cytocompatibility was confirmed by MTT assays, showing over 80% fibroblast viability on dressings and over 90% viability in leachate-containing media. The blood compatibility of the dressing was confirmed by standard methods. The dressings also exhibited strong antibacterial activity, with 82% killing of Staphylococcus aureus and 52% killing of Escherichia coli. These results highlight the potential of these membranes for advanced wound care applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信