Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review. 释放丝基蛋白质作为生物材料在尖端药物输送方面的能量:综合综述。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-04 DOI: 10.1080/09205063.2024.2397215
Vishal Kumar Parida, Kavita, Rashmi Arora, Teenu Sharma
{"title":"Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review.","authors":"Vishal Kumar Parida, Kavita, Rashmi Arora, Teenu Sharma","doi":"10.1080/09205063.2024.2397215","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397215","url":null,"abstract":"<p><p>Silk proteins, viz., sericin, fibroin and their modified forms etc., have been thoroughly researched as natural biopolymers for the development of varied nanomaterials exhibiting diverse biomedical applications. The silk proteins are extracted from the cocoons by degumming and treatment with soaps, followed by dissolution and dialysis against water. These proteins exhibit distinct mechanical and physicochemical characteristics including biocompatibility, controlled biodegradability, self-assembling traits, chemical modifiability, and adaptability, thus making it an ideal drug delivery vehicle. In this regard, silk protein-derived drug delivery systems have been reported as efficient carrier to encapsulate and stabilize the wide variety of pharmacological molecules, enzymes, proteins, vaccines, and even DNA, allowing them to remain active for a longer period of time. Further, different delivery carriers researched employing these proteins for multitude of applications include hydrogels, sponges, fibres, scaffolds and particulate delivery systems. Additionally, the chemical modification of silk proteins has further opened avenues for development of other modified silk proteins with improved physicochemical traits and hence exhibiting enormous potential in development of varied bioenhanced carrier systems. The current article thus provides the holistic information of characteristics, types of silk protein-based delivery carriers, and their fabrication techniques, while emphasizing the applications of different silk proteins in biomedicine and drug delivery.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-04 DOI: 10.1080/09205063.2024.2397618
{"title":"Correction.","authors":"","doi":"10.1080/09205063.2024.2397618","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397618","url":null,"abstract":"","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells. 可注射水凝胶中的氧化石墨烯对间充质干细胞成骨分化的影响
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-03 DOI: 10.1080/09205063.2024.2397211
Yaru Zhu, Tao Wang, Zhen He, Mingchong Liu, Chunfang Zhang, Guixin Sun, Qidong Wang
{"title":"Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells.","authors":"Yaru Zhu, Tao Wang, Zhen He, Mingchong Liu, Chunfang Zhang, Guixin Sun, Qidong Wang","doi":"10.1080/09205063.2024.2397211","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397211","url":null,"abstract":"<p><p>Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/β-tricalcium phosphate (β-TCP)/GO hydrogel <i>via</i> hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by β-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. <i>In vivo</i> experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/β-TCP/GO hydrogel system may have potential applications in bone tissue engineering.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dialysis treatment, in vitro, and anticoagulation activity of polysulfone-polyacrylamide based-blend membranes: an experimental study. 基于聚砜-聚丙烯酰胺的混合膜的透析处理、体外和抗凝活性:一项实验研究。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-03 DOI: 10.1080/09205063.2024.2398325
Shafiq Uz Zaman, Muhammad Shozab Mehdi
{"title":"Dialysis treatment, in vitro, and anticoagulation activity of polysulfone-polyacrylamide based-blend membranes: an experimental study.","authors":"Shafiq Uz Zaman, Muhammad Shozab Mehdi","doi":"10.1080/09205063.2024.2398325","DOIUrl":"https://doi.org/10.1080/09205063.2024.2398325","url":null,"abstract":"<p><p>The majority of treatments are performed with polysulfone (PSf) membranes. The main issue of the PSf membrane is its lack of endothelial function, leading to various processes like platelet adhesion, protein adsorption, and thrombus formation when comes in contact with blood. The crucial aspect in the development of hemodialysis (HD) membrane materials is a biocompatibility factor. This study aims to improve the performance and biocompatibility of PSf membranes by utilizing polyethylene glycol (PEG) as a pore-forming agent and polyacrylamide (PAA) as a multifunctional modifying additive owing to its non-toxic, and biocompatible nature. The formulated HD membranes were characterized using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Water Contact Angle (WCA) measurements. The biocompatibility results showed that PSf-PAA membranes reduced the adsorption of bovine serum albumin (BSA) protein, hemolysis process, thrombus formation, and platelets adhesion with improved <i>in vitro</i> cytotoxicity results as well as anticoagulation performance. The protein separation results showed that PSf-PAA membranes were able to reject 90.1% and 92.8% of BSA protein. The membranes also showed better uremic waste clearance for urea (76.56% and 78.24%) and creatinine (73.71% and 79.13%) solutes, respectively. It is conceivable that these modern-age membranes may surpass conventional HD membranes regarding both efficiency and effectiveness.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting SARS-CoV2 spike glycoprotein: molecular insights into phytocompounds binding interactions - in-silico molecular docking. 以 SARS-CoV2 穗状糖蛋白为靶标:植物化合物结合相互作用的分子洞察力 - 室内分子对接。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-03 DOI: 10.1080/09205063.2024.2399395
K Saravanan, S Elavarasi, G Revathi, P Karuppannan, M Ashokkumar, C Muthusamy, A Ram Kumar
{"title":"Targeting SARS-CoV2 spike glycoprotein: molecular insights into phytocompounds binding interactions - <i>in-silico</i> molecular docking.","authors":"K Saravanan, S Elavarasi, G Revathi, P Karuppannan, M Ashokkumar, C Muthusamy, A Ram Kumar","doi":"10.1080/09205063.2024.2399395","DOIUrl":"https://doi.org/10.1080/09205063.2024.2399395","url":null,"abstract":"<p><p>This study utilized small molecular characterization and docking study to evaluate the binding affinity of seven antiviral phytocompounds with the SARS CoV-2 variants (SARS-CoV-2 Spike Glycoprotein, SARS-CoV-2 Spike Protein Variant in 1-RBD, Alpha Variant SARS-CoV2- Spike Protein). The results revealed that five of seven compounds, possesses excellent drug lead property reveled through in-silico ADMET analysis. In addition, six of seven except D-Glucosamine, exhibited excellent binding affinity. Six ligands possess significant binding affinity towards SARS-CoV-2 variants 6VXX, 7LWV and 7R13, which is certainly greater than Remdesivir. Fagaronine found to be the best drug candidate against SARS-CoV-2 variants, It was found that -7.4, -5.6 and -6.3 is the docking score respectively. Aranotin, Beta aescin, Gliotoxin, and Fagaronine formed hydrogen bonds with specific amino acids and exhibited significant binding interactions. These findings suggest that these phytocompounds could be promising candidates for developing antiviral therapies against SARS-CoV-2. Moreover, the study underscores the importance of molecular docking in understanding protein-ligand interactions and its role in drug discovery. The documented pharmacological properties of these compounds in the literature further support their potential therapeutic relevance in various diseases.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films. 增强离子交联硫醇化胶凝胶薄膜的粘液粘附性能。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-02 DOI: 10.1080/09205063.2024.2397199
Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy
{"title":"Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films.","authors":"Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy","doi":"10.1080/09205063.2024.2397199","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397199","url":null,"abstract":"<p><p>Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties <i>via</i> carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing. 氧化镁纳米粒子对 PVA/PEG 基膜的影响在伤口愈合中的潜在应用。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-01 DOI: 10.1080/09205063.2024.2364526
Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim
{"title":"The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing.","authors":"Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim","doi":"10.1080/09205063.2024.2364526","DOIUrl":"10.1080/09205063.2024.2364526","url":null,"abstract":"<p><p>The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (T<sub>m</sub>). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment. 靶向聚合伯氨喹纳米粒子:优化、评估和体内肝脏吸收,以改善疟疾治疗。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 DOI: 10.1080/09205063.2024.2391225
Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh
{"title":"Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment.","authors":"Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh","doi":"10.1080/09205063.2024.2391225","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391225","url":null,"abstract":"<p><p>Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the <i>in vitro</i> release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. <i>In vivo</i> studies in Swiss albino mice infected with <i>Plasmodium berghei</i> revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells. 将布洛芬/柚皮苷复合到玉米蛋白/酪蛋白酸钠纳米颗粒中的制备方法:对肝癌细胞抗增殖活性和凋亡诱导的评估。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 DOI: 10.1080/09205063.2024.2391653
Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya
{"title":"Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells.","authors":"Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya","doi":"10.1080/09205063.2024.2391653","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391653","url":null,"abstract":"<p><p>Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. <i>In vitro</i>, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC<sub>50</sub> values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to <i>in vitro</i> results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. 开发具有骨/牙组织工程应用潜力的新型混合纳米材料:富集-SAPO-34/CS/PANI 支架的设计、制造和表征。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2366638
Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa
{"title":"Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold.","authors":"Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa","doi":"10.1080/09205063.2024.2366638","DOIUrl":"10.1080/09205063.2024.2366638","url":null,"abstract":"<p><p>Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信