Karan A Maniar, Bindu Kumari Nagendra Yadav, Shreeraj Shah
{"title":"Lipidic nanocarriers for the treatment of schizophrenia: progress and prospects of solid lipid nanoparticles and nanostructured lipid carriers.","authors":"Karan A Maniar, Bindu Kumari Nagendra Yadav, Shreeraj Shah","doi":"10.1080/09205063.2025.2554131","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a persistent and incapacitating neuropsychiatric condition that presents considerable obstacles regarding pharmacological administration and therapeutic effectiveness. Lipidic nanocarriers, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), have emerged as effective drug delivery vehicles for enhancing the bioavailability, stability, and controlled release of antipsychotic medicines. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have several benefits, such as improved drug loading capacity, less systemic adverse effects, and superior efficacy in traversing the blood-brain barrier compared to conventional formulations. This study examines advancements in the development of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for schizophrenia therapy, emphasising their potential to improve cerebral medication delivery, extend drug release duration, and decrease administration frequency. Moreover, the essay discusses the difficulties related to the scaling of lipid-based nanocarriers, regulatory obstacles, long-term safety concerns, and the necessity for personalised treatment strategies. Notwithstanding the encouraging results in preclinical models, other challenges persist, including the necessity for enhanced formulation methodologies, safety validation, and regulatory clarity. Future possibilities entail the advancement of personalised nanomedicine platforms and intelligent nanocarriers that respond to particular stimuli, perhaps transforming schizophrenia treatment through more targeted, efficient, and individualised treatments.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2554131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophrenia is a persistent and incapacitating neuropsychiatric condition that presents considerable obstacles regarding pharmacological administration and therapeutic effectiveness. Lipidic nanocarriers, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), have emerged as effective drug delivery vehicles for enhancing the bioavailability, stability, and controlled release of antipsychotic medicines. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have several benefits, such as improved drug loading capacity, less systemic adverse effects, and superior efficacy in traversing the blood-brain barrier compared to conventional formulations. This study examines advancements in the development of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for schizophrenia therapy, emphasising their potential to improve cerebral medication delivery, extend drug release duration, and decrease administration frequency. Moreover, the essay discusses the difficulties related to the scaling of lipid-based nanocarriers, regulatory obstacles, long-term safety concerns, and the necessity for personalised treatment strategies. Notwithstanding the encouraging results in preclinical models, other challenges persist, including the necessity for enhanced formulation methodologies, safety validation, and regulatory clarity. Future possibilities entail the advancement of personalised nanomedicine platforms and intelligent nanocarriers that respond to particular stimuli, perhaps transforming schizophrenia treatment through more targeted, efficient, and individualised treatments.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.