{"title":"It is not about \"toughness\": addressing the exclusion and inequality in academia.","authors":"Fernanda Staniscuaski, Pâmela B Mello-Carpes","doi":"10.1152/japplphysiol.00689.2024","DOIUrl":"https://doi.org/10.1152/japplphysiol.00689.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redefining success and well-being in a demanding scientific career.","authors":"Patrick Diaba-Nuhoho","doi":"10.1152/japplphysiol.00722.2024","DOIUrl":"https://doi.org/10.1152/japplphysiol.00722.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"When does it end?\" Continuing to align career goals and work-life balance after graduate training.","authors":"Daniel H Craighead, Zachary S Clayton","doi":"10.1152/japplphysiol.00703.2024","DOIUrl":"https://doi.org/10.1152/japplphysiol.00703.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Braving the new world.","authors":"Alexandra M Coates","doi":"10.1152/japplphysiol.00682.2024","DOIUrl":"https://doi.org/10.1152/japplphysiol.00682.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enjoying the journey of academia and research.","authors":"Nicholas T Kruse, Jarrod Gable, Roop C Jayaraman","doi":"10.1152/japplphysiol.00729.2024","DOIUrl":"https://doi.org/10.1152/japplphysiol.00729.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"Are we <i>soft</i>?\" Importance of aligning career goals with work-life balance.","authors":"Douglas R Seals, Christopher A DeSouza","doi":"10.1152/japplphysiol.00475.2024","DOIUrl":"10.1152/japplphysiol.00475.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ollie Jay, Julien D Périard, Lindsey Hunt, Haiyu Ren, HyunGyu Suh, Richard R Gonzalez, Michael N Sawka
{"title":"Whole body sweat rate prediction: indoor treadmill and cycle ergometer exercise.","authors":"Ollie Jay, Julien D Périard, Lindsey Hunt, Haiyu Ren, HyunGyu Suh, Richard R Gonzalez, Michael N Sawka","doi":"10.1152/japplphysiol.00829.2023","DOIUrl":"10.1152/japplphysiol.00829.2023","url":null,"abstract":"<p><p>This article describes the development and validation of accurate whole body sweat rate prediction equations for individuals performing indoor cycle ergometer and treadmill exercise, where power output can be measured or derived from simple inputs. For cycle ergometry, 112 trials (67 participants) were used for model development and another 56 trials (42 participants) for model validation. For treadmill exercise, 171 trials (67 participants) were used for model development and another 95 trials (63 participants) for model validation. Trials were conducted over a range of dry-bulb temperature (20°C to 40°C), relative humidity (14% to 60%), and exercise intensity (∼40% to 85% of peak aerobic power) conditions, which were matched between model development and model validation. Whole body sweat rates were measured, and proprietary prediction models were developed (accounting for all relevant biophysical factors) and then validated. For model validation, mean absolute error for predicted sweating rate was 0.01 and 0.02 L·h<sup>-1</sup> for cycle and treadmill trials, respectively. The 95% confidence intervals were modest for cycle ergometer (+0.25 and -0.22 L·h<sup>-1</sup>) and treadmill exercise (+0.33 and -0.29 L·h<sup>-1</sup>). The accounted for variance between predicted and measured values was 92% and 78% for cycle and treadmill exercise, respectively. Bland-Altman analysis indicated that zero and one predicted value exceeded the a priori acceptable level of agreement (equivalent to ±2% of total body mass in 3 h) for cycle and treadmill exercise, respectively. There were fewer trials with female subjects, but their values did not differ from those expected for males. This is the foremost study to develop and validate whole body sweat rate prediction equations for indoor treadmill and cycle ergometer exercise of moderate to high intensity. These prediction equations are publicly available for use (https://sweatratecalculator.com).<b>NEW & NOTEWORTHY</b> This study presents the development of new proprietary whole body sweat rate prediction models for people exercising indoors on a cycle ergometer or treadmill using simple input parameters and delivered through a publicly available online calculator: https://sweatratecalculator.com. In an independent validation group, the predictive models for both indoor cycling and treadmill exercise were accurate across moderate to high exercise intensities in temperate to hot conditions. These equations will enable individualized hydration management during physical training and exercise physiology experiments.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technological advances disrupting elite sports performance: business as usual.","authors":"James Heathers","doi":"10.1152/japplphysiol.00588.2024","DOIUrl":"10.1152/japplphysiol.00588.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The paradox of technology bans in sports: ensuring fairness and performance.","authors":"Omar Khobbaiz, Abdelmohsen Eldhma","doi":"10.1152/japplphysiol.00561.2024","DOIUrl":"10.1152/japplphysiol.00561.2024","url":null,"abstract":"","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca H Clough, Ronney B Panerai, Kannaphob Ladthavorlaphatt, Thompson G Robinson, Jatinder S Minhas
{"title":"The complexity of cerebral blood flow regulation: the interaction of posture and vasomotor reactivity.","authors":"Rebecca H Clough, Ronney B Panerai, Kannaphob Ladthavorlaphatt, Thompson G Robinson, Jatinder S Minhas","doi":"10.1152/japplphysiol.00851.2023","DOIUrl":"10.1152/japplphysiol.00851.2023","url":null,"abstract":"<p><p>Arterial carbon dioxide ([Formula: see text]) and posture influence the middle (MCAv) and posterior (PCAv) cerebral artery blood velocities, but there is paucity of data about their interaction and need for an integrated model of their effects, including dynamic cerebral autoregulation (dCA). In 22 participants (11 males, age 30.2 ± 14.3 yr), blood pressure (BP, Finometer), dominant MCAv and nondominant PCAv (transcranial Doppler ultrasound), end-tidal CO<sub>2</sub> (EtCO<sub>2</sub>, capnography), and heart rate (HR, ECG) were recorded continuously. Two recordings (R) were taken when the participant was supine (R1, R2), two taken when the participant was sitting (R3, R4), and two taken when the participant was standing (R5, R6). R1, R3, and R5 consisted of 3 min of 5% CO<sub>2</sub> through a mask and R2, R4, and R6 consisted of 3 min of paced hyperventilation. The effects of [Formula: see text] were expressed with a logistic curve model (LCM) for each parameter. dCA was expressed by the autoregulation index (ARI), derived by transfer function analysis. Standing shifted LCM to the left for MCAv (<i>P</i> < 0.001), PCAv (<i>P</i> < 0.001), BP (<i>P</i> = 0.03), and ARI (<i>P</i> = 0.001); downward for MCAv and PCAv (both <i>P</i> < 0.001), and upward for HR (<i>P</i> < 0.001). For BP, LCM was shifted downward by sitting and standing (<i>P</i> = 0.024). For ARI, the hypercapnic range of LCM was shifted upward during standing (<i>P</i> < 0.001). A more complete mapping of the combined effects of posture and arterial CO<sub>2</sub> on the cerebral circulation and peripheral variables can be obtained with the LCM over a broad physiological range of EtCO<sub>2</sub> values.<b>NEW & NOTEWORTHY</b> Data from supine, sitting, and standing postures were measured. Modeling the data with logistic curves to express the effects of CO<sub>2</sub> reactivity on middle cerebral artery blood velocity (MCAv), posterior cerebral artery blood velocity (PCAv), heart rate, blood pressure (BP), and the autoregulation index (ARI), provided a more comprehensive approach to study the interaction of arterial CO<sub>2</sub> with posture than in previous studies. Above all, shifts of the logistic curve model with changes in posture have shown interactions with [Formula: see text] that have not been previously demonstrated.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}