Journal of Bioactive and Compatible Polymers最新文献

筛选
英文 中文
Bioactivity of chitosan nanoparticles synthesized by a novel route towards Escherichia coli and Bacillus subtilis 以新型方法合成的壳聚糖纳米粒子对大肠杆菌和枯草杆菌的生物活性
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2024-02-16 DOI: 10.1177/08839115241230970
Kanchan Parate, Pratibha Pandey
{"title":"Bioactivity of chitosan nanoparticles synthesized by a novel route towards Escherichia coli and Bacillus subtilis","authors":"Kanchan Parate, Pratibha Pandey","doi":"10.1177/08839115241230970","DOIUrl":"https://doi.org/10.1177/08839115241230970","url":null,"abstract":"Chitosan nanoparticles (CSNP) with an average size of 25.67 nm were synthesized via a novel wet chemical route and characterized using scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. Comparative antibacterial assays of Chitosan NP suspensions prepared in water (at neutral pH) and in dilute acetic acid and chitosan gel prepared in dilute acetic acid/hydrochloric acid (all at concentrations up to 1%) were performed against Escherichia coli ( E. coli) and Bacillus subtilis ( B. subtilis) bacteria using spread plate method. A parallel viability test was conducted to confirm the presence of surviving cells in the bulk test volume. Minimum bactericidal concentration (MBC) of chitosan gel was 0.5 mg/ml for the bulk chitosan dissolved in 0.05% v/v aq. acetic acid and 0.1 mg/ml for chitosan dissolved in 0.01% v/v aqueous (aq.) hydrochloric acid. In comparison, Chitosan NP were found to be growth promoter at neutral pH and exhibited cell protective efficacy in presence of aq. acetic acid. The biocidal activity of chitosan gel in acidic media was higher when prepared in strong inorganic acid, that is, aq. HCl in comparison with the gel prepared in a relatively weak organic acid that is, aq. CH<jats:sub>3</jats:sub>COOH at the same concentration. Antibacterial action also showed pH dependence with higher activity at lower pH. However, respective aq. acids also gave comparable bactericidal action; indicating that chitosan may not have any inherent antibacterial property and basically it acts as a growth promoter.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellulose acetate scaffold containing hydroxyapatite/graphene oxide nanocomposite by electrospinning for advanced regenerative therapies 通过电纺丝技术将含有羟基磷灰石/氧化石墨烯纳米复合材料的醋酸纤维素支架用于先进的再生疗法
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2024-02-16 DOI: 10.1177/08839115241233345
Luan dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves
{"title":"Cellulose acetate scaffold containing hydroxyapatite/graphene oxide nanocomposite by electrospinning for advanced regenerative therapies","authors":"Luan dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves","doi":"10.1177/08839115241233345","DOIUrl":"https://doi.org/10.1177/08839115241233345","url":null,"abstract":"The aim of this study was to synthesize and characterize Cellulose Acetate (CA) porous scaffolds using the electrospinning technique associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO), for advanced regenerative therapies application. The scaffolds were categorized into four distinct groups based on their composition: (1) Pure CA scaffolds; (2) CAHA scaffolds; (3) CAHAGO 1.0% scaffolds; (4) CAHAGO 1.5% scaffolds. Transmission Electron Microscopy (TEM) was used for the characterization of the nanocomposite. The scaffolds were analyzed by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis of Variance (two-way) was used, followed by Tukey’s post-test (α = 0.05). The TEM analysis allowed for the visualization of the deposition of HA on the graphene sheets, confirming the synthesis of the nanocomposite. XRD revealed the predominant presence of CaP phases in the CAHA, CAHAGO 1.0%, and CAHAGO 1.5% groups, underscoring the inherent mineral composition of the scaffolds. FTIR demonstrated cellulose characteristics and PO<jats:sub>4</jats:sub> bands in the groups containing HA, confirming the effective incorporation of this material. Raman spectroscopy revealed distinct peaks in the GO groups, conclusively verifying the successful integration of graphene into the scaffold matrix. The micrographs showcased irregular pores filling the entire surface, arising from the intricate overlapping of fibers during scaffold formation. Importantly, all scaffolds exhibited excellent cell viability in the conducted assays. A proliferation process was observed in CAHA and CAHAGO 1.5% groups after 48 h ( p &lt; 0.05). In conclusion, the scaffolds synthesized hold significant promise in the realm of tissue engineering and provide a fresh perspective on the possibilities for regenerative therapies.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139952126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the anti-neuropathic effects of naringin-loaded chitosan nanocarriers in a murine model of constriction injury 在小鼠收缩损伤模型中评估柚皮苷载荷壳聚糖纳米载体的抗神经病学效应
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2024-01-04 DOI: 10.1177/08839115231223963
Maryam Safari, S. Fakhri, Hassan Maleki, Mohammad Hosein Farzaei
{"title":"Evaluating the anti-neuropathic effects of naringin-loaded chitosan nanocarriers in a murine model of constriction injury","authors":"Maryam Safari, S. Fakhri, Hassan Maleki, Mohammad Hosein Farzaei","doi":"10.1177/08839115231223963","DOIUrl":"https://doi.org/10.1177/08839115231223963","url":null,"abstract":"Peripheral neuropathies are associated with various detrimental complications, leading to life-debilitating disorders, including neuropathic pain. Hence, the current study aimed to incorporate naringin, a potential natural component, into chitosan nanoparticles (NPs) to ameliorate the complications resulting from chronic constriction injury (CCI) induced painful neuropathy. The prepared NPs had a particle size of 220 nm and PDI = 0.37, with relatively spherical morphology and zeta potential of +41.5 mV. The relevant analyses indicated the loading and high encapsulation efficiency of naringin into the NPs as well as a prolonged release of naringin. The anti-neuropathic evaluations of chronic constriction injury (CCI)-induced rats treated with naringin-loaded NPs (10 mg/kg) remarkably ameliorated hyperalgesia and cold allodynia. In addition, the treatment with naringin-loaded NPs led to improvements in sensory and locomotor impairment, as evidenced by changes in behavioral parameters such as reduced paw licking, increased rearings, and enhanced crossings. The NPs treatment significantly attenuated the elevated levels of nitrite and restored the reduced glutathione level in the serum of CCI-induced rats. Moreover, histopathological analysis exhibited regeneration of the sciatic nerve injury through reducing myelin degeneration, axonal swelling, and nerve fiber derangement. Therefore, these findings suggest that the naringin-loaded chitosan NPs has promising pharmacological activities for the treatment of neuropathic pain sufferers.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of melatonin-embedded PLGA-PEG6000 nanofiber biomaterial, and investigation of the effects on abdominal adhesion formation 开发褪黑素嵌入PLGA-PEG6000纳米纤维生物材料并研究其对腹腔粘连形成的影响
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-12-08 DOI: 10.1177/08839115231218732
Oruç Numan Gökçe, D. Aykora, Merve Danışman, Ufuk Demir, Cemre Aydeğer, S. C. Suner, Ayhan Oral, İhsan Karaboğa, Metehan Uzun
{"title":"Development of melatonin-embedded PLGA-PEG6000 nanofiber biomaterial, and investigation of the effects on abdominal adhesion formation","authors":"Oruç Numan Gökçe, D. Aykora, Merve Danışman, Ufuk Demir, Cemre Aydeğer, S. C. Suner, Ayhan Oral, İhsan Karaboğa, Metehan Uzun","doi":"10.1177/08839115231218732","DOIUrl":"https://doi.org/10.1177/08839115231218732","url":null,"abstract":"Abdominal adhesions are still among the most common postsurgical peritoneal inflammation-related complications. Adhesion-related disorders are still highly costly and prevalent due to advances in surgical techniques, treatment methods, and various drugs. The present study aimed to investigate the effects of Poly ( D,L-lactide-co-glycolide) (PLGA)- polyethylene glycol (PEG6000) Nanofiber + Melatonin on the abdominal adhesion model in rats. For this purpose, PLGA-PEG6000 Nanofiber + Melatonin matrix was fabricated and implanted in an experimental abdominal adhesion model in rats. Our study consisted of an in vitro and an in vivo part. The degradation and release profile of the matrix and Melatonin (Mel) embedded matrix was performed in vitro. In vivo, the procedure was carried out with 18 Wistar male rats. Rats were divided into three groups as follows: Sham, Matrix, and Mel + Matrix, respectively. Consequent to degradation and release profiling in vitro, an experimental adhesion model was created and fabricated pure matrix (2 × 2 cm2), and matrix (2 × 2 cm2, 0.25 mg melatonin/per matrix embedded) was applied to injury area in related groups. Intra-abdominal adhesion scores were determined on post-op 21st day, under general anesthesia. Following, cecum, peritoneal tissue, and adhesive bands were harvested. Macroscopic analysis (severity of adhesion formation), Hematoxlyn&Eosin and Masson’s Trichrome staining (for the examination of the levels of infiltration of inflammatory cells, fibrosis, and neovascularization) were performed for the evaluation of the effects of Mel embedded and pure matrix Our results indicated that PLGA-PEG6000 Nanofiber + Melatonin matrix was degraded completely in rats abdominal cavity and significantly reduced adhesion formation compared to other groups macroscopically ( p < 0.05). On the other hand, the histopathological analysis indicated that the fabricated matrix reduced inflammatory cell infiltration, fibrosis, and neovascularization levels.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E7-modified gelatin microcarriers for efficient expansion and stemness preservation of mesenchymal stem cells 用于间充质干细胞高效扩增和干性保存的 E7 改性明胶微载体
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-12-08 DOI: 10.1177/08839115231216999
Yan Li, Qunzi Ge, Lie Ma
{"title":"E7-modified gelatin microcarriers for efficient expansion and stemness preservation of mesenchymal stem cells","authors":"Yan Li, Qunzi Ge, Lie Ma","doi":"10.1177/08839115231216999","DOIUrl":"https://doi.org/10.1177/08839115231216999","url":null,"abstract":"Mesenchymal stem cells (MSCs) possess self-renewal ability, multi-differentiation potential and low immunogenicity, thus serving as an ideal choice for cell therapies. Ex-vivo expansion systems that have been developed to meet clinical demands are faced with two crucial barriers, limited quantity and stemness loss of expanded cells. Hence, it is crucial and feasible to construct microcarriers that can show high and specific affinity to MSCs, and support highly efficient cell expansion with minimal stemness loss. In this study, EPLQLKM (E7) peptides were modified onto gelatin microcarriers by poly (ethylene glycol) (PEG) linkers, which showed great antifouling ability against xenogenic components. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) harvested from the E7-modified gelatin microcarriers achieved better cell attachment, stemness maintenance, viability, and multilineage differentiation potentials, especially those with a higher E7 density. Attributing to the promotion for cell adhesion, E7 functionalization increased the expansion efficiency of rBMSCs with improved quantity and quality simultaneously, thereby providing a novel strategy for scalable expansion to optimize the clinical performance of MSCs.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138587044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and characterization of skin substitutes from electrospun polycaprolactone/silk fibroin 电纺聚己内酰胺/蚕丝纤维素皮肤替代品的开发和特性分析
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-12-07 DOI: 10.1177/08839115231216998
Gulsah Yildiz, Y. E. Arslan, Burak Derkuş, Billur Sezgin, Yusuf Ziya Menceloglu, G. R. Bayar
{"title":"Development and characterization of skin substitutes from electrospun polycaprolactone/silk fibroin","authors":"Gulsah Yildiz, Y. E. Arslan, Burak Derkuş, Billur Sezgin, Yusuf Ziya Menceloglu, G. R. Bayar","doi":"10.1177/08839115231216998","DOIUrl":"https://doi.org/10.1177/08839115231216998","url":null,"abstract":"Tissue-engineered skin substitutes have great potential to treat chronic wounds and high-degree burns. Existing solutions, such as Integra Dermal Template, are extensively used for skin defects. However, these templates are still lacking in terms of recreating the functionality of the native tissue and providing scarless healing. In this study, polycaprolactone/silk fibroin (PCL/SF)-based nanofibers with varying blends were fabricated and characterized to develop a novel skin substitute. Morphological analysis showed that the nanofiber distribution of each sample was homogenous without showing any beads. In terms of mechanical properties, all the samples other than SF showed sufficient mechanical strength. It was observed that adding a specific amount of SF into the PCL nanofiber improves the tensile strength of the samples due to the introduction of intermolecular interactions from the functional groups of SF. In addition, incorporating SF into PCL improved Young’s modulus of the PCL nanofibers since SF provides stiffness and structural integrity to the overall structure. Water contact angle analysis was performed as the hydrophilicity of a biomaterial is a significant factor in cell functionality. Each sample had a contact angle between 33° and 48°, indicating the adequate hydrophilicity of nanofibers for advanced cell proliferation other than PCL. Cell proliferation and viability studies were conducted with the seeding of primary human keratinocytes on the samples. It was examined that scaffolds containing blends of PCL and SF resulted in higher cell proliferation and viability after 7 days compared to pure PCL and SF nanofibers.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer-induced liquid precursors: How are they being used and what is the effect on dentin remineralization? A scoping review 聚合物诱导液体前体:它们是如何使用的,对牙本质再矿化有何影响?范围审查
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-12-06 DOI: 10.1177/08839115231216997
M. A. A. Fraga, C. S. Garfias, Patricia Akemi Nishitani Shibasaki, A. Correr, M. D. De Goes, R. Puppin-Rontani
{"title":"Polymer-induced liquid precursors: How are they being used and what is the effect on dentin remineralization? A scoping review","authors":"M. A. A. Fraga, C. S. Garfias, Patricia Akemi Nishitani Shibasaki, A. Correr, M. D. De Goes, R. Puppin-Rontani","doi":"10.1177/08839115231216997","DOIUrl":"https://doi.org/10.1177/08839115231216997","url":null,"abstract":"To identify the effectiveness of polymer-induced liquid precursors (PILP) on dentin remineralization and the assessment approaches used to evaluate remineralization. The analyses were done into six stages: (1) Identifying the research question; (2) Identifying the studies; (3) Selecting relevant studies; (4) Plotting the data; (5) Reporting results; and (6) Risk of bias. The searches were carried out in the following databases: PubMed, Web of Science, and Scopus. A total of 247 articles were identified in the electronic database search. After applying the eligibility criteria, only 12 articles were included for data extraction. The outcomes of dentin remineralization patterns were plotted in association to PILP agent type and application mode. The intrafibrillar mineralization occurred in 78% of studies where polyaspartic acid (pAsp) was used, and 50% when the polyacrylic acid (PAA) was used. All the studies where PILP was used in a restorative material (resin composite, glass ionomer, and adhesive system)—extra and intrafibrillar mineralization pattern was found. The association of PILP agents with other materials with potential for mineralization showed beneficial results in remineralization, since they provide a medium to high concentration of calcium and phosphate. The pAsp showed better results for interfibrillar remineralization when compared to PAA. The association with Ca/P release materials or solution Ca P are essentials for mineralization via PILP agent. Further studies are needed to assess the effectiveness of remineralization through PILP agents because the level of evidence of the studies was low.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, characterization, and in vivo implantation of eugenol-loaded nanogels and PCL/Cs electrospun nanofibers for wound healing applications 丁香酚负载纳米凝胶和PCL/Cs静电纺纳米纤维在伤口愈合中的制备、表征和体内植入
4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-11-01 DOI: 10.1177/08839115231207337
Fariba Noori, Mahmoud Osanloo, Hamid Reza Moradi, Hamidreza Ghaderi Jafarbeigloo, Mozhgan Jirehnezhadyan, Seyed Amin Kouhpayeh, Mahtab Tirgare, Azam Bozorgi, Arash Goodarzi
{"title":"Fabrication, characterization, and in vivo implantation of eugenol-loaded nanogels and PCL/Cs electrospun nanofibers for wound healing applications","authors":"Fariba Noori, Mahmoud Osanloo, Hamid Reza Moradi, Hamidreza Ghaderi Jafarbeigloo, Mozhgan Jirehnezhadyan, Seyed Amin Kouhpayeh, Mahtab Tirgare, Azam Bozorgi, Arash Goodarzi","doi":"10.1177/08839115231207337","DOIUrl":"https://doi.org/10.1177/08839115231207337","url":null,"abstract":"Developing wound dressings with a high potential to cover damaged skin tissue and facilitate cell adhesion and migration at the injury site is crucial in skin tissue engineering to accelerate wound healing. Electrospun nanofibers from natural/synthetic polymers are amongst the favorable wound dressings with appropriate physicochemical and biological properties. As well, nanoformulations of phenolic phytochemical “eugenol” have been shown to fasten wound healing via various anti-inflammatory and anti-oxidant effects. Herein, we developed a bi-component wound dressing of PCL/Cs electrospun nanofibers and eugenol nanogel to investigate its effects on tissue healing in vivo. PCL/Cs nanofibers were fabricated using an electrospinning method at the 15:1 ratio, and eugenol-loaded nanogels were synthesized by adding carboxymethylcellulose as the gelling agent, and their physicochemical characteristics were assessed. Scaffolds were implanted in a full-thickness excision wound model in Wistar rats, followed up for 21 days. The results showed that electrospun nanofibers had an average diameter of 228 nm with uniform and smooth morphology aligned randomly. Eugenol-loaded nanogel showed an average size distribution of 126 nm. Eugenol-loaded nanogel and nanogel + nanofiber groups significantly reduced wound surface area over 21 days. Histological evaluations showed that Eugenol-loaded nanogel and nanogel + nanofiber groups developed the full-thickness epidermis with the complete epithelium and stratum corneum, angiogenesis, and low macrophage infiltration in which predominantly mature collagen fibers were poorly and well organized, respectively. The combination of eugenol-loaded nanogel + PCL/Cs nanofiber accelerated wound healing by reducing inflammation, and edema along with enhancing angiogenesis, collagen synthesis, and re-epithelialization.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of chitosan/polyvinylpyrrolidone hydrogels for controlled amoxicillin release 壳聚糖/聚乙烯吡咯烷酮控制释放阿莫西林凝胶的合成与表征
4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-11-01 DOI: 10.1177/08839115231207817
Zerihun Feyisa, Neeraj K Gupta, Gemechu Deressa Edossa, Anandhakumar Sundaramurthy, Ashish Kapoor
{"title":"Synthesis and characterization of chitosan/polyvinylpyrrolidone hydrogels for controlled amoxicillin release","authors":"Zerihun Feyisa, Neeraj K Gupta, Gemechu Deressa Edossa, Anandhakumar Sundaramurthy, Ashish Kapoor","doi":"10.1177/08839115231207817","DOIUrl":"https://doi.org/10.1177/08839115231207817","url":null,"abstract":"Hybrid crosslinked hydrogel-based drug delivery systems can deliver therapeutically beneficial drug release effects through controlled release on a temporal and spatial scale. Due to their tuneable physicochemical properties and the ability to prevent drug degradation, these systems facilitate different physicochemical interactions that control drug release. This research aims to synthesize a potent pH-sensitive crosslinked chitosan/polyvinylpyrrolidone hydrogel using different ratios of both the polymers and varying the glutaraldehyde crosslinking agent amount by the solution casting technique for controlled amoxicillin-release properties to mitigate gastrointestinal tract bacterial infection. The effect of polymer ratios and glutaraldehyde amount is investigated by the developing porosity, gel fraction, and extent of swelling in simulated physiological fluids of pH 1.2, 6.8, and 7.4 and in vitro biodegradation at pH 7.4. Interaction between the polymers with the formation of crosslinked structures, good stability, amorphous phase nature, and honeycomb-like structures of the hydrogels is revealed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. Based on these properties, a chitosan/polyvinylpyrrolidone hydrogel (ratio of 60:40) crosslinked with 600 μL glutaraldehyde in 8 g of the polymers displaying adequate swelling in acidic to basic pH and in vitro biodegradation at pH 7.4 is chosen for the in situ loading of 200 mg of the drug amoxicillin. The cumulative drug release in simulated physiological fluids and the drug release kinetics using different models show that the best-fit Korsmeyer-Peppas model suggests amoxicillin release from the matrix follows diffusion and swelling-controlled time-dependent non-Fickian transport related to hydrogel erosion. This composition displays excellent antimicrobial activity against Streptococcus pyogenes and Escherichia coli.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A silk fibroin scaffold that accelerates both biodegradation and cell proliferation by incorporating sericin 一种丝素蛋白支架,通过结合丝胶蛋白加速生物降解和细胞增殖
4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-11-01 DOI: 10.1177/08839115231207815
Wenjing Zhang, Xiaoxiao Sun, Peng Pan, Xueping Liu, Cheng Hu, Mengmeng Wang, Mingzhong Li, Yu Liu
{"title":"A silk fibroin scaffold that accelerates both biodegradation and cell proliferation by incorporating sericin","authors":"Wenjing Zhang, Xiaoxiao Sun, Peng Pan, Xueping Liu, Cheng Hu, Mengmeng Wang, Mingzhong Li, Yu Liu","doi":"10.1177/08839115231207815","DOIUrl":"https://doi.org/10.1177/08839115231207815","url":null,"abstract":"When 3D silk fibroin scaffolds are used for the regeneration of soft tissues with fast regeneration rates, such as skin dermis, one concern is to accelerate the biodegradation of scaffolds and to match the degradation rate of scaffolds with the regeneration rate of tissues. In this study, sericin was incorporated into 3D silk fibroin scaffolds through crosslinking and followed by freeze-drying. The effects of incorporating sericin on the pore wall microstructure within the scaffolds, the biodegradability of scaffolds and cell proliferation within scaffolds were investigated. It was found that a large number of secondary pores and nanoscale particles were generated on the pore walls within the scaffolds due to the incorporation of sericin and that the number of secondary pores and the size of the particles increased with increasing sericin proportion. The results of in vitro biodegradation and coculture with human umbilical vein vascular endothelial cells demonstrated that the incorporation of sericin not only significantly accelerated the degradation of 3D silk fibroin scaffolds, but also promoted cell adhesion and proliferation. The secondary pores and particles generated on the pore walls inside the fibroin/sericin hybrid scaffolds had a positive contribution to promoting cell adhesion and proliferation. This study provides a biocompatible method for the modification of silk fibroin scaffolds, which can not only accelerate the biodegradation of the scaffold but also promote the adhesion and proliferation of seeded cells.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信