Abigail F Wu, Audrey L. Wu, T. Yeh, Pei-Chun Wong, Jia-Lin Wu
{"title":"壳聚糖和葡聚糖水凝胶作为填充材料在骨科植入术中的应用前景","authors":"Abigail F Wu, Audrey L. Wu, T. Yeh, Pei-Chun Wong, Jia-Lin Wu","doi":"10.1177/08839115231195791","DOIUrl":null,"url":null,"abstract":"To enhance osteointegration between bone implants and bone tissues in implantation surgery, this study aimed to develop a hydrogel using chitosan and dextran to improve the cell proliferative ability, cell migratory capacity, and cell osteogenic ability. Herein, we developed two different hydrogel compositions with three different amounts of magnesium sulfate to produce six hydrogels for application as a filler for total knee replacement surgery to replace bone cement. The swelling property, degradation behavior, composition, and structure of the hydrogel were systemically investigated. Moreover, an MTT assay, scratch test, and alizarin red S staining were conducted to analyze the cell viability, migratory ability, and osteogenic response after being stimulated by the hydrogel. MC3T3-E1 preosteoblasts exhibited significantly improved cell proliferation, migratory capacity, osteogenesis, and mineralization due to MgSO4 in the hydrogel. Our work provides insights into the development of biomimetic and osteogenic hydrogels for bone integration in implantation surgery.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"17 1","pages":"358 - 367"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan and dextran hydrogel as a filler for possible application in orthopedic implantation surgery\",\"authors\":\"Abigail F Wu, Audrey L. Wu, T. Yeh, Pei-Chun Wong, Jia-Lin Wu\",\"doi\":\"10.1177/08839115231195791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance osteointegration between bone implants and bone tissues in implantation surgery, this study aimed to develop a hydrogel using chitosan and dextran to improve the cell proliferative ability, cell migratory capacity, and cell osteogenic ability. Herein, we developed two different hydrogel compositions with three different amounts of magnesium sulfate to produce six hydrogels for application as a filler for total knee replacement surgery to replace bone cement. The swelling property, degradation behavior, composition, and structure of the hydrogel were systemically investigated. Moreover, an MTT assay, scratch test, and alizarin red S staining were conducted to analyze the cell viability, migratory ability, and osteogenic response after being stimulated by the hydrogel. MC3T3-E1 preosteoblasts exhibited significantly improved cell proliferation, migratory capacity, osteogenesis, and mineralization due to MgSO4 in the hydrogel. Our work provides insights into the development of biomimetic and osteogenic hydrogels for bone integration in implantation surgery.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"17 1\",\"pages\":\"358 - 367\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115231195791\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115231195791","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Chitosan and dextran hydrogel as a filler for possible application in orthopedic implantation surgery
To enhance osteointegration between bone implants and bone tissues in implantation surgery, this study aimed to develop a hydrogel using chitosan and dextran to improve the cell proliferative ability, cell migratory capacity, and cell osteogenic ability. Herein, we developed two different hydrogel compositions with three different amounts of magnesium sulfate to produce six hydrogels for application as a filler for total knee replacement surgery to replace bone cement. The swelling property, degradation behavior, composition, and structure of the hydrogel were systemically investigated. Moreover, an MTT assay, scratch test, and alizarin red S staining were conducted to analyze the cell viability, migratory ability, and osteogenic response after being stimulated by the hydrogel. MC3T3-E1 preosteoblasts exhibited significantly improved cell proliferation, migratory capacity, osteogenesis, and mineralization due to MgSO4 in the hydrogel. Our work provides insights into the development of biomimetic and osteogenic hydrogels for bone integration in implantation surgery.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).