{"title":"Crystal Structure of Glycoside Hydrolase Family 20 Lacto-<i>N</i>-biosidase from Soil Bacterium <i>Streptomyces</i> sp. Strain 142.","authors":"Noriki Fujio, Shinya Fushinobu, Chihaya Yamada","doi":"10.5458/jag.7202101","DOIUrl":"10.5458/jag.7202101","url":null,"abstract":"<p><p>Lacto-<i>N</i>-biosidase hydrolyzes the β-GlcNAc or β-GalNAc bond of sugar chains to release lacto-<i>N</i>-biose I (Gal-β1,3-GlcNAc) or galacto-<i>N</i>-biose (Gal-β1,3-GalNAc) from the non-reducing end. Typical substrates for lacto-<i>N</i>-biosidase include type I oligosaccharides contained in human breast milk, such as lacto-<i>N</i>-tetraose. Lacto-<i>N</i>-biosidases have recently received significant attention because of their potential to synthesize milk oligosaccharides. Bifidobacterial lacto-<i>N</i>-biosidases belonging to glycoside hydrolase families 20 and 136 have been studied. The GH20 lacto-<i>N</i>-biosidases utilize a substrate-associated hydrolysis mechanism. LnbB from <i>Bifidobacterium bifidum</i> is the only lacto-<i>N</i>-biosidase with reported crystal structures in GH20. In this study, the crystal structure of the lacto-<i>N</i>-biosidase from <i>Streptomyces</i> sp. strain 142 (<i>Str</i>LNBase) was solved in a complex with lacto-<i>N</i>-biose and galacto-<i>N</i>-biose. The stabilizing residue, which recognizes the nitrogen atom of the <i>N</i>-acetyl group of the -1 subsite, and the catalytic acid/base residue, were determined to be D304 and E305, respectively. The structure of <i>Str</i>LNBase is similar to that of LnbB; however, in the complex with galacto-<i>N</i>-biose, there were two structures exhibiting different sugar conformations. A phylogenetic analysis revealed that lacto-<i>N</i>-biosidases discovered in the soil bacteria <i>Streptomyces</i> spp. and human gut bacteria <i>Bifidobacterium</i> spp. may be divided into two separate groups, which suggests that they evolved divergently.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 2","pages":"7202101"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144274953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an LC-MS/MS Method for Quantitation of Western Honeybee (<i>Apis mellifera</i>) α-Glucosidase III as a Potential Honey Authenticity Marker.","authors":"Yushi Takahashi, Izumi Yoshida, Toshiaki Yokozeki, Yoshinari Hirakawa, Kazuhiro Fujita","doi":"10.5458/jag.7202106","DOIUrl":"10.5458/jag.7202106","url":null,"abstract":"<p><p>Western honeybee (<i>Apis mellifera</i>) α-glucosidase III (HBG-III), which is secreted from the hypopharyngeal glands of honeybees, plays a role in converting nectar into honey. Consequently, hypothesizing that HBG-III is a suitable marker of honey authenticity, we developed an analytical method to determine the HBG-III content and investigated its applicability to various commercial products. Following extraction from honey using phosphate-buffered saline, HBG-III was concentrated using an ultrafiltration membrane and subsequently fragmented with trypsin and lysyl endopeptidase mixture. The specific peptide fragments were used for quantitation by liquid chromatography-tandem mass spectrometry. The established method was validated for linearity, accuracy, precision, and the limit of quantitation (LOQ). As a result, the calibration curve was linear in the range of 0.01-0.3 μM, the mean recovery ranged from 73.8 to 89.2 %, the within-laboratory reproducibility (RSD<sub>wr</sub>) ranged from 3.9 to 6.5 %, and the LOQ was 1.9 mg/kg. An investigation of HBG-III concentrations in 65 honey products available on the Japanese market revealed that the HBG-III content of 15 low-priced honey products was below the LOQ. This suggested that these products may be adulterated with non-honey syrups. Therefore, this method can serve as an effective tool to verify the authenticity of honey products.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 2","pages":"7202106"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144274954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyaluronidase Inhibitory Activity of Polysaccharides Separated from a Fermented Beverage of Plant Extracts.","authors":"Hideki Okada, Akira Yamamori, Naoki Kawazoe, Keiji Ueno, Shuichi Onodera","doi":"10.5458/jag.7202202","DOIUrl":"10.5458/jag.7202202","url":null,"abstract":"<p><p>Super Ohtaka<sup>®</sup>, a fermented beverage of plant extracts, is prepared from approximately 50 kinds of vegetables and fruits is a naturally fermented mainly by lactic acid bacteria (<i>Leuconostoc</i> spp.) and yeast (<i>Zygosaccharomyces</i> spp.). In this study, we separated water-soluble polysaccharides from Super Ohtaka<sup>®</sup> using dialysis and chromatography, yielding four polysaccharide fractions. The polysaccharide fraction designated as OEP3 exhibited hyaluronidase inhibitory activity. The half-maximal inhibitory concentration was 860 µg/mL. This polysaccharide not only stimulated macrophages but also inhibited hyaluronidase activity and showed weak 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 2","pages":"7202202"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144274988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal Structure of CcGH131B, a Protein Belonging to Glycoside Hydrolase Family 131 from the Basidiomycete <i>Coprinopsis cinerea</i>.","authors":"Yuta Shiojima, Ryotaro Sano, Takuma Kozono, Atsushi Nishikawa, Yuka Kojima, Makoto Yoshida, Naoki Sunagawa, Kiyohiko Igarashi, Takashi Tonozuka","doi":"10.5458/jag.7202104","DOIUrl":"10.5458/jag.7202104","url":null,"abstract":"<p><p>Glycoside hydrolase family 131 (GH131) proteins are found in oomycetes, ascomycetes, and basidiomycetes, and have been reported to hydrolyze various β-glucan polysaccharides. <i>Coprinopsis cinerea</i>, a model basidiomycete, contains two GH131 proteins, CcGH131A and CcGH131B. This study focuses on the structural and functional properties of CcGH131B, a protein that lacks the carbohydrate bonding module 1 (CBM1) domain present in CcGH131A. The crystal structure of CcGH131B was determined. The structure displayed a β-jelly roll fold with extra loops and α-helices, resulting in a deeper substrate-binding groove compared to CcGH131A and also PaGluc131A, a GH131 protein from <i>Podospora anserina</i>. A cellobiose-bound structure of the E161A mutant, in which the potential catalytic residue Glu161 was substituted with Ala, showed that the region of the minus subsites bind cellulose. In contrast, the region of the plus subsites mainly consists of hydrophobic amino acid residues and appeared to interact with hydrophobic molecules rather than with carbohydrates. Analysis using native affinity polyacrylamide gel electrophoresis showed that CcGH131B interacted with cellulosic polysaccharides such as methylcellulose and carboxymethylcellulose, while the protein exhibited no detectable enzymatic activity under the tested conditions. These results suggest that the substrate specificity of CcGH131B is likely to be different from those of CcGH131A and PaGluc131A.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 2","pages":"7202104"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144274952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of Isoprimeverose from Xyloglucan Using <i>Aspergillus oryzae</i>.","authors":"Tomohiko Matsuzawa, Naoki Shimada, Shimma Fujiwa","doi":"10.5458/jag.7201202","DOIUrl":"10.5458/jag.7201202","url":null,"abstract":"<p><p>Isoprimeverose [α-D-xylopyranosyl-(1→6)-D-glucose] is produced from xyloglucan using the cooperative action of glycoside hydrolases including isoprimeverose-producing oligoxyloglucan hydrolase and β-galactosidase in <i>Aspergillus oryzae</i>. This study investigated <i>A. oryzae</i> strains and culture conditions suitable for isoprimeverose production from xyloglucan. Each strain of <i>A. oryzae</i> had a different ability to degrade xyloglucans. When an <i>A. oryzae</i> strain with high xyloglucan-degradation activity was cultured in a medium containing partially degraded xyloglucan as the carbon source, the production of glycoside hydrolases that degrade xyloglucan into isoprimeverose was highly induced. Our procedure efficiently produced isoprimeverose from xyloglucan without any genetically modified microorganisms or purification of enzymes.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201202"},"PeriodicalIF":1.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-pot Enzymatic Synthesis of Sophorose from Sucrose and Glucose.","authors":"Yuka Tatebe, Yuri Yamamoto, Naoto Isono","doi":"10.5458/jag.7201201","DOIUrl":"10.5458/jag.7201201","url":null,"abstract":"<p><p>In this study, we developed a method to synthesize sophorose using three enzymes-sucrose phosphorylase from <i>Leuconostoc mesenteroides</i>, 1,2-β-oligoglucan phosphorylase from <i>Enterococcus italicus</i>, and exo β-1,2-glucooligosaccharide sophorohydrolase from <i>Parabacteroides distasonis</i>-in a one-pot reaction, employing inexpensive starting materials. After optimization, a reaction was carried out using 5 mM glucose, 250 mM sucrose, 10 mM inorganic phosphate, and enzyme concentrations of 5 µg/mL sucrose phosphorylase, 20 µg/mL 1,2-β-oligoglucan phosphorylase, and 50 µg/mL exo β-1,2-glucooligosaccharide sophorohydrolase at 30 °C for 48 h, yielding 108 mM sophorose. Following yeast treatment, sophorose was purified by size-exclusion chromatography with a final yield of 45 % based on the amount of sucrose used as the donor substrate.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201201"},"PeriodicalIF":1.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Water Activity and Temperature on the Caking Properties of Amorphous Carbohydrate Powders.","authors":"Sukritta Anantawittayanon, Takumi Mochizuki, Kiyoshi Kawai","doi":"10.5458/jag.7201103","DOIUrl":"10.5458/jag.7201103","url":null,"abstract":"<p><p>Water sorption reduces the glass transition temperature (<i>T</i> <sub>g</sub>) of amorphous carbohydrate powders due to water plasticization. Caking of amorphous powder occurs when <i>T</i> <sub>g</sub> decreases below the storage temperature (<i>T</i>), that is, when the glass-to-rubber transition occurs. Although glass-to-rubber transition also occurs when <i>T</i> is greater than <i>T</i> <sub>g</sub>, knowledge regarding the caking of amorphous powders induced by <i>T</i> elevation is limited. Thus, caking properties were investigated using amorphous carbohydrate powders with varying water activity (<i>a</i> <sub>w</sub>) values prepared at 25 °C, stored at a higher temperature, and then returned to 25 °C (<i>T</i>-cycled samples) for storage. Maltodextrin and glucose mixtures at weight ratios of 0, 0.1, and 0.2 glucose were employed. The caking behavior of <i>T</i>-cycled powders with high <i>a</i> <sub>w</sub> values was similar to that of <i>a</i> <sub>w</sub>-cycled samples (dried powders were stored under various <i>a</i> <sub>w</sub> conditions and then returned to the dry condition via vacuum-drying) reported previously. <i>T</i>-cycled powders with a low <i>a</i> <sub>w</sub> value, by contrast, were resistant to caking even in the rubbery state. This suggests that water molecules support the progression of caking as the binder under high-<i>a</i> <sub>w</sub> conditions. To analyze the hydration level at which water molecules begin to act as a binder for caking, determination of the multilayer adsorbed water content and multilayer adsorbed <i>a</i> <sub>w</sub> values is proposed. The fracture stress increased with increases in <i>T</i> - <i>T</i> <sub>g</sub>, depending on the sample. The binding effect of water also contributed to the formation of a harder cake.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201103"},"PeriodicalIF":1.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetics of Structural Changes in Starch Retrogradation Observed by Simultaneous SANS/FTIR-ATR Measurements.","authors":"Yoshinobu Hirata, Fumitoshi Kaneko, Aurel Radulescu, Takahisa Nishizu, Nakako Katsuno, Teppei Imaizumi, Ryuhei Motokawa, Takayuki Kumada, Hiroshi Nakagawa","doi":"10.5458/jag.7201102","DOIUrl":"10.5458/jag.7201102","url":null,"abstract":"<p><p>Because of the complicated hierarchical structure of starch, starch retrogradation is usually evaluated by combining several structural analysis methods covering various spatial scales. However, structural analyses are typically performed individually, making correlating the structural changes at different spatial scales challenging. Therefore, this study used a simultaneous measurement system comprising small-angle neutron scattering (SANS)/Fourier-transform infrared (FTIR)-attenuated total reflection (ATR) to record multiple structural changes in potato starch during retrogradation. In the SANS patterns, the shoulder-like peak became more pronounced with time. The peak intensity, <i>I</i> <sub>max</sub>, representing the amount of ordered semicrystalline structures, increased over time, revealing the orderly reassembly of starch on the nanoscale upon retrogradation. In the FTIR-ATR spectra, the ratio of absorptions (<i>R</i> <sub>1042/1016</sub>) at 1,042 and 1,016 cm<sup>-1</sup>, indicating the short-range ordered structure in starch, increased during retrogradation. Therefore, the double-helix structures were reformed during retrogradation. The rate constant of the kinetic change for <i>R</i> <sub>1042/1016</sub> was larger than for <i>I</i> <sub>max</sub>; thus, changes in the short-range ordered structure of starch converged before the changes in the semicrystalline structure. These results suggest that the formation of double-helix structures of the amylopectin side chain and the structural change of its ordered arrangement could occur in stages during retrogradation.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201102"},"PeriodicalIF":1.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atsushi Kawano, Tomohiro Yamamoto, Yuya Shinagawa, Isao Hanashiro, Hironori Yoshida
{"title":"Enzymatic Synthesis of a Novel Short Linear Maltodextrin from Starch.","authors":"Atsushi Kawano, Tomohiro Yamamoto, Yuya Shinagawa, Isao Hanashiro, Hironori Yoshida","doi":"10.5458/jag.7201101","DOIUrl":"10.5458/jag.7201101","url":null,"abstract":"<p><p>Short linear maltodextrin (SLMD) was synthesized from starch via the combined action of branching and debranching enzymes. The number-average degree of polymerization and number-average chain length of SLMD were 8.49 ± 0.21 and 8.52 ± 0.60, respectively, indicating that it consists of linear chains. In gel permeation chromatography analyses, SLMD showed a single peak at a molecular weight of 1,200. SLMD consisted mainly of linear saccharides with a degree of polymerization of 6-12, without high molecular weight α-glucans or small malto-oligosaccharides. SLMD had a much higher blue value and a longer λmax compared with those of commercial dextrose equivalent (DE) 13 maltodextrin. While the DE 13 maltodextrin solution remained clear, an SLMD solution became turbid upon cooling, with the turbidity reversing upon heating. This interconversion was reproducible. SLMD absorbed moisture only to a limited extent, even under high relative humidity, and remained solid without noticeable viscousness. These results demonstrate the novelty and distinct properties of SLMD compared with those of other maltodextrins available on the market, implying its potential for various applications in the food industry.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201101"},"PeriodicalIF":1.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of the Thermostable D-Allulose 3-Epimerase from <i>Arthrobacter globiformis</i> M30 by Protein Engineering Method.","authors":"Kouhei Ohtani, Kensaku Shimada, Pushpa Kiran Gullapalli, Kazuhiko Ishikawa","doi":"10.5458/jag.jag.JAG-2024_0003","DOIUrl":"10.5458/jag.jag.JAG-2024_0003","url":null,"abstract":"<p><p>D-Allulose 3-epimerase catalyzes C-3 epimerization between D-fructose and D-allulose was found in <i>Arthrobacter globiformis</i> strain M30. The enzyme gene was cloned, and its recombinant enzyme and the mutant variants were expressed in <i>E. coli.</i> Using the information of the sequence and model structure, we succeed in the improvement of melting temperature for the enzyme without significant loss of the enzyme activity by protein engineering method. The melting temperatures were increased by 2.7, 2.1, 3.7, 5.1, and 8.0 c[C for the mutants Glu75Pro, Arg137Lys, Ala200Lys, Ala270Lys, and Val237Ile, respectively. Each effect of the mutation was independent and additive. By integrating the above mutations, we constructed a thermostable mutant that exhibits a melting temperature 12 c[C higher than wild type, and remains stable at 65 c[C for 2 h. These highly stable properties suggest that the thermostable enzymes represent an ideal enzyme candidate for the industrial production of D-allulose.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"71 4","pages":"95-102"},"PeriodicalIF":1.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}