Journal of Aerosol Medicine and Pulmonary Drug Delivery最新文献

筛选
英文 中文
Correlation Between Dynamic Spray Plume and Drug Deposition of Solution-Based Pressurized Metered-Dose Inhalers. 基于溶液的加压计量吸入器的动态喷雾羽流与药物沉积之间的相关性。
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 Epub Date: 2024-07-15 DOI: 10.1089/jamp.2023.0050
Yaru Zhou, Bo Yang, Chen Hong, Qi Shao, Ningyun Sun, Yibin Mao
{"title":"Correlation Between Dynamic Spray Plume and Drug Deposition of Solution-Based Pressurized Metered-Dose Inhalers.","authors":"Yaru Zhou, Bo Yang, Chen Hong, Qi Shao, Ningyun Sun, Yibin Mao","doi":"10.1089/jamp.2023.0050","DOIUrl":"10.1089/jamp.2023.0050","url":null,"abstract":"<p><p><b><i>Background:</i></b> The lack of visual dynamic spray characterization has made the understanding of the physical processes governing atomization and drug particle formation difficult. This study aimed to investigate the changes in the spray plume morphology and aerodynamic particle size of solution-based pressurized metered-dose inhalers (pMDIs) under different conditions to achieve better drug deposition. <b><i>Methods:</i></b> Solution-based pMDIs were studied, and the effects of various factors, such as propellant concentration, orifice diameters, and atomization chamber volume, on drug deposition were examined by analyzing the characteristics of spray plume and aerodynamic particle size. <b><i>Results:</i></b> Reducing the actuator orifice and spray area led to a concentrated spray plume and increased duration and speed. Moreover, the aerodynamic particle sizes D50 and D90 decreased, whereas D10 remained relatively unchanged. Decreasing the atomization chamber volume of the actuator led to reduced spray area and an increased duration but a decreased plume velocity. D90 exhibited a decreasing trend, whereas D10 and D50 remained relatively unchanged. Reducing the propellant concentration in the prescription, the spray area and the plume velocity first decreased and then increased. The duration initially increased and then decreased. The values of D50 and D90 showed an initial decreasing followed by an increasing trend, whereas D10 remained relatively unchanged. <b><i>Conclusions:</i></b> During the development process, attention should be paid to the changes in the spray area, spray angle, duration, and speed of the spray plume. This study recommended analyzing the characteristics of the spray plume and combining the data of two or more aerodynamic particle size detection methods to verify the deposition <i>in vitro</i> to achieve rapid screening and obtain high lung deposition <i>in vivo</i>.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"232-240"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. 结核分枝杆菌核酸疫苗脂质体肺部递送及其作用机制的研究进展。
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 Epub Date: 2024-04-26 DOI: 10.1089/jamp.2023.0025
Danyang Zhang, Haimei Zhao, Ping Li, Xueqiong Wu, Yan Liang
{"title":"Research Progress on Liposome Pulmonary Delivery of <i>Mycobacterium tuberculosis</i> Nucleic Acid Vaccine and Its Mechanism of Action.","authors":"Danyang Zhang, Haimei Zhao, Ping Li, Xueqiong Wu, Yan Liang","doi":"10.1089/jamp.2023.0025","DOIUrl":"10.1089/jamp.2023.0025","url":null,"abstract":"<p><p>Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"284-298"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barriers that Inhaled Particles Encounter. 吸入粒子遇到的障碍
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 DOI: 10.1089/jamp.2024.27498.bp
Brijeshkumar Patel, Nilesh Gupta, Fakhrul Ahsan
{"title":"Barriers that Inhaled Particles Encounter.","authors":"Brijeshkumar Patel, Nilesh Gupta, Fakhrul Ahsan","doi":"10.1089/jamp.2024.27498.bp","DOIUrl":"10.1089/jamp.2024.27498.bp","url":null,"abstract":"<p><p>Inhalable particulate drug carriers-nano- and micro-particles, liposomes, and micelles-should be designed to promote drug deposition in the lung and engineered to exhibit the desired drug release property. To deposit at the desired site of action, inhaled particles must evade various lines of lung defense, including mucociliary clearance, entrapment by mucus layer, and phagocytosis by alveolar macrophages. Various physiological, mechanical, and chemical barriers of the respiratory system reduce particle residence time in the lungs, prevent particle deposition in the deep lung, remove drug-filled particles from the lung, and thus diminish the therapeutic efficacy of inhaled drugs. To develop inhalable drug carriers with efficient deposition properties and optimal retention in the lungs, particle engineers should have a thorough understanding of the barriers that particles confront and appreciate the lung defenses that remove the particles from the respiratory system. Thus, this section summarizes the mechanical, chemical, and immunological barriers of the lungs that inhaled particles must overcome and discusses the influence of these barriers on the fate of inhaled particles.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"37 5","pages":"299-306"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Journal of Aerosol Medicine and Pulmonary Drug Delivery. 罗莎琳德-富兰克林学会自豪地宣布《气溶胶医学和肺部给药杂志》2023 年获奖者。
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 DOI: 10.1089/jamp.2024.32154.rfs2023
Mylene G H Frankfort
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i>.","authors":"Mylene G H Frankfort","doi":"10.1089/jamp.2024.32154.rfs2023","DOIUrl":"https://doi.org/10.1089/jamp.2024.32154.rfs2023","url":null,"abstract":"","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"37 5","pages":"219"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. 糖/缺氧诱导大鼠肺动脉高压的生物学和药理学现状概览》(Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats.
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 DOI: 10.1089/jamp.2024.0016
Michel R Corboz, Tam L Nguyen, Andy Stautberg, David Cipolla, Walter R Perkins, Richard W Chapman
{"title":"Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats.","authors":"Michel R Corboz, Tam L Nguyen, Andy Stautberg, David Cipolla, Walter R Perkins, Richard W Chapman","doi":"10.1089/jamp.2024.0016","DOIUrl":"10.1089/jamp.2024.0016","url":null,"abstract":"<p><p>The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"37 5","pages":"241-283"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are the Reference Values for the Provocative Concentration of Methacholine Appropriate for Children? 甲氧胆碱诱发浓度的参考值是否适合儿童?
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 Epub Date: 2024-08-30 DOI: 10.1089/jamp.2024.0012
Allan L Coates, Myrtha E Reyna, Cathy C Doyle, Mark W Nagel
{"title":"Are the Reference Values for the Provocative Concentration of Methacholine Appropriate for Children?","authors":"Allan L Coates, Myrtha E Reyna, Cathy C Doyle, Mark W Nagel","doi":"10.1089/jamp.2024.0012","DOIUrl":"10.1089/jamp.2024.0012","url":null,"abstract":"<p><p><b><i>Background:</i></b> Preliminary data in a randomly selected pediatric cohort study in 8-year-olds suggested a rate of positivity to a methacholine challenge test that was unexpectedly high, roughly 30%. The current recommendation for a negative methacholine test is a 20% decrease in the forced expiratory volume in one second at a dose greater than 400 μg. This was derived from studies in adults using the obsolete English Wright nebulizer. One explanation for the high incidence of positivity in the study in 8-year-olds could be that children deposit more methacholine on a μg/kg basis than adults, due to differences in their breathing patterns. The purpose of this study was to determine if pediatric breathing patterns could result in a higher dose of methacholine depositing in the lungs of children based on μg/kg body weight compared with adults. <b><i>Methods:</i></b> An AeroEclipse Breath Actuated nebulizer delivered methacholine aerosol, generated from a 16 mg/mL solution, for one minute, using age-appropriate breathing patterns for a 70 kg adult and a 30 and 50 kg child produced by a breathing simulator. Predicted lung deposition was calculated from the collected dose of methacholine on a filter placed at the nebulizer outport, multiplied by the fraction of the aerosol mass contained in particles ≤5 μm. The dose of methacholine on the inspiratory filter was assayed by high performance liquid chromatography (HPLC). Particle size was measured using laser diffraction technology. <b><i>Results:</i></b> The mean (95% confidence intervals) predicted pulmonary dose of methacholine was 46.1 (45.4, 46.8), 48.6 (45.3, 51.9), and 36.1 (34.2, 37.9) μg/kg body weight for the 30 kg child, 50 kg child, and 70 kg adult, respectively. <b><i>Conclusions:</i></b> On a μg/kg body weight, the predicted pulmonary dose of methacholine was greater with the pediatric breathing patterns than with the adult pattern.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"220-224"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suboptimal Peak Inspiratory Flow in Patients Hospitalized for COPD Exacerbation: Prevalence and Predictive Factors. 慢性阻塞性肺疾病恶化住院患者的峰值吸气流量不达标:患病率和预测因素
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-10-01 Epub Date: 2024-06-19 DOI: 10.1089/jamp.2024.0002
Almudena González-Montaos, Luis Pazos-Area, Cristina Represas-Represas, Cristina Ramos-Hernández, Irene Lojo-Rodríguez, Ana Priegue-Carrera, Luz Aballe-Santos, Alberto Fernández-Villar
{"title":"Suboptimal Peak Inspiratory Flow in Patients Hospitalized for COPD Exacerbation: Prevalence and Predictive Factors.","authors":"Almudena González-Montaos, Luis Pazos-Area, Cristina Represas-Represas, Cristina Ramos-Hernández, Irene Lojo-Rodríguez, Ana Priegue-Carrera, Luz Aballe-Santos, Alberto Fernández-Villar","doi":"10.1089/jamp.2024.0002","DOIUrl":"10.1089/jamp.2024.0002","url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Despite the importance of an adequate peak inspiratory flow (PIF) during inhaled therapy in patients with COPD, the available evidence in patients with severe exacerbations and their evolution after admission is limited. We conducted this study to evaluate the PIF during an exacerbation, its variability, and predictors of suboptimal PIF. <b><i>Material and Methods:</i></b> A prospective study that included patients admitted for COPD exacerbation. Clinical, demographic, and functional variables were recorded. Using the In-Check DIAL G16<sup>®</sup>, PIF without resistance (PIF-nr) and that obtained by simulating the resistance of the patients' usual inhalers (PIF) were determined within the first 48 hours of admission and prior to discharge; also assessed during a stable phase in a subgroup of patients. The results were compared and, through a multivariate study, the factors related to a suboptimal PIF were analyzed. <b><i>Results:</i></b> A total of 137 patients were included; 27% were women and the mean age was 69.4 ± 9.8 years. Moreover, 30.8% of the participants with dry powder inhalers had a suboptimal PIF at admission and it was independently associated with female sex (odds ratio [OR] = 8.635; 95% confidence interval [CI] [2.007, 37.152]; <i>p</i> < 0.01) and forced expiratory volume in the 1st second (FEV1) (OR = 0.997; 95% CI: [0.995, 0.999]; <i>p</i> = 0.04). At discharge, suboptimal PIF reduced to 17% (<i>p</i> < 0.01). PIF-nr increased from the time of admission to the stable phase. <b><i>Conclusion:</i></b> One third of COPD patients admitted with a severe exacerbation had a suboptimal PIF, being female sex and lower FEV1 independent predictors. PIF-nr improved progressively after the exacerbation.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"37 5","pages":"225-231"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Formoterol, Glycopyrrolate, and Beclomethasone Dipropionate Pharmacokinetic Profile after Inhaled Administration as pMDI Using HFA134a or HFA152a Propellant: Preclinical Assessment of Drug Exposure in Sprague-Dawley Rat Model. 使用 HFA134a 或 HFA152a 推进剂作为 pMDI 吸入给药后福莫特罗、甘草酸苷和二丙酸倍氯米松的药代动力学特征比较:Sprague-Dawley 大鼠模型药物暴露的临床前评估。
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-09-26 DOI: 10.1089/jamp.2024.0019
Alessandro Fioni, Giandomenico Brogin, Paola Puccini, Andrew Dennis Allen, Daniela Miglietta, Erika Cuoghi, Enrico Zambelli, Loredana Battipaglia
{"title":"Comparison of Formoterol, Glycopyrrolate, and Beclomethasone Dipropionate Pharmacokinetic Profile after Inhaled Administration as pMDI Using HFA134a or HFA152a Propellant: Preclinical Assessment of Drug Exposure in Sprague-Dawley Rat Model.","authors":"Alessandro Fioni, Giandomenico Brogin, Paola Puccini, Andrew Dennis Allen, Daniela Miglietta, Erika Cuoghi, Enrico Zambelli, Loredana Battipaglia","doi":"10.1089/jamp.2024.0019","DOIUrl":"https://doi.org/10.1089/jamp.2024.0019","url":null,"abstract":"<p><p><b><i>Background:</i></b> A fixed combination of formoterol, glycopyrrolate, and beclomethasone dipropionate is approved in some geographic areas as pressurized metered dose inhaler (pMDI) formulation for the treatment of asthma and chronic obstructive pulmonary disease. Current pMDIs use hydrofluoroalkanes (HFAs) as a propellant, such as 1,1,1,2-tetrafluoroethane (HFA134a), that have a high global warming potential (GWP), but their use is being progressively lowered to reduce impact on climate. One option to reduce the carbon footprint of the pMDI products while preserving pMDIs as a therapeutic option is reformulating the current pMDIs using low GWP propellants, such as 1,1-difluoroethane (HFA152a). Nevertheless, pharmaceutical, clinical, and regulatory challenges need to be considered when reformulating a pMDI. A nonclinical study in rodents has been performed to support the formulation work and optimize the design of the bioequivalence study in humans. <b><i>Methods:</i></b> A fixed combination of formoterol, glycopyrrolate, and beclomethasone dipropionate (BDP) as pMDI with the two propellants HFA134a or HFA152a was administered by inhalation to Sprague-Dawley rats, using inhalation tower, to assess the impact of the propellant on the PK profile of the active components. After administration, serial blood samples were taken from each rat, and plasma aliquots were analyzed by HPLC-MS/MS. <b><i>Results:</i></b> Inhalation administration to rats of the fixed triple combination as pMDI showed similar PK profile for formoterol, glycopyrrolate, and BDP with the two propellants. Exposure parameters C<sub>max</sub> and AUC<sub>last</sub> of the three active ingredients were compared, showing no statistically significant differences in the systemic exposure between the two treatment groups. Higher interanimal variability was observed for the metabolite beclomethasone 17-monopropionate, likely due to individual differences in the metabolite generation. <b><i>Conclusions:</i></b> Considering these data, it was possible to conclude that replacing propellant HFA134a with HFA152a in a newly developed formulation had no significant impact on the plasmatic PK profile of formoterol, glycopyrrolate, and BDP in rats after inhalation administration using inhalation towers.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Systemic Exposure Between Epinephrine Delivered via Metered-Dose Inhalation and Intramuscular Injection. 通过计量吸入和肌肉注射给药的肾上腺素全身暴露量比较
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-08-29 DOI: 10.1089/jamp.2024.0025
Jack Yongfeng Zhang, Mary Ziping Luo, Tony Marrs, Edward M Kerwin, Don A Bukstein
{"title":"Comparison of Systemic Exposure Between Epinephrine Delivered via Metered-Dose Inhalation and Intramuscular Injection.","authors":"Jack Yongfeng Zhang, Mary Ziping Luo, Tony Marrs, Edward M Kerwin, Don A Bukstein","doi":"10.1089/jamp.2024.0025","DOIUrl":"https://doi.org/10.1089/jamp.2024.0025","url":null,"abstract":"<p><p><b><i>Background:</i></b> Primatene<sup>®</sup> MIST, an epinephrine metered-dose inhaler (MDI), has long been questioned by some medical professionals for asthma treatment despite having been approved by the Food and Drug Administration. One of the primary reasons for their concerns stemmed from potential cardiovascular complications following epinephrine administration. However, the majority of documented cardiovascular complications seemed to occur following the injection route of the epinephrine. The aim of this study was to evaluate the systemic exposure of epinephrine delivered through different administration routes and to understand its relationship with cardiovascular effects. Since albuterol inhalers are commonly recommended for asthma, albuterol was also studied as a comparator drug. <b><i>Method:</i></b> A randomized, evaluator-blinded, three-arm crossover study was conducted in 28 healthy adult subjects to compare the profiles of systemic exposure for epinephrine delivered by MDI versus epinephrine intramuscular (IM) injection and albuterol MDI. Serially sampled plasma epinephrine and albuterol levels were measured and compared between treatment groups. Safety was assessed by adverse events, serial vital signs, electrocardiograms (ECGs), and clinical laboratory tests obtained at each crossover dosing visit. <b><i>Results:</i></b> Systemic exogenous drug exposure for inhaled epinephrine MDI (39 pg/mL × hour) was ∼9 times lower than that of epinephrine IM (435 pg/mL × hour) and 122 times lower than that of albuterol MDI (3453 pg/mL × hour) after dose normalization. The C<sub>max</sub> in epinephrine MDI (345 pg/mL) was approximately half of that of epinephrine IM (816 pg/mL) and that of albuterol MDI (681 pg/mL). Plasma drug concentrations for epinephrine MDI dropped rapidly to baseline (∼0.6 hour), while epinephrine IM took ∼8 hours, and albuterol MDI required more than 24 hours. Epinephrine MDI and albuterol MDI resulted in minimal, clinically insignificant changes in vital signs and ECGs, whereas epinephrine IM led to mild transient increases in systolic blood pressure, heart rate, and corrected QT interval. <b><i>Conclusion:</i></b> Epinephrine MDI (Primatene MIST) had ∼9 times lower systemic drug exposure (SDE) than that of epinephrine IM and ∼122 times lower than that of albuterol MDI. The lower SDE of inhaled epinephrine also correlated with reassuring safety findings, with no significant cardiovascular adverse effects found, compared with transient effects seen after IM epinephrine. <b>Clinical trial registration number:</b> NCT04207840.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery. 吸入纳米微粒系统:成分、制造和气溶胶输送。
IF 2 4区 医学
Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-08-01 DOI: 10.1089/jamp.2024.29117.mk
Heidi M Mansour, Priya Muralidharan, Don Hayes
{"title":"Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery.","authors":"Heidi M Mansour, Priya Muralidharan, Don Hayes","doi":"10.1089/jamp.2024.29117.mk","DOIUrl":"10.1089/jamp.2024.29117.mk","url":null,"abstract":"<p><p>An increasing growth in nanotechnology is evident from the growing number of products approved in the past decade. Nanotechnology can be used in the effective treatment of several pulmonary diseases by developing therapies that are delivered in a targeted manner to select lung regions based on the disease state. Acute or chronic pulmonary disorders can benefit from this type of therapy, including respiratory distress syndrome (RDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary infections (e.g. tuberculosis, <i>Yersinia pestis</i> infection, fungal infections, bacterial infections, and viral infections), lung cancer, cystic fibrosis (CF), pulmonary fibrosis, and pulmonary arterial hypertension. Modification of size and surface property renders nanoparticles to be targeted to specific sites, which can serve a vital role in innovative pulmonary drug delivery. The nanocarrier type chosen depends on the intended purpose of the formulation and intended physiological target. Liquid nanocarriers and solid-state nanocarriers can carry hydrophilic and hydrophobic drugs (e.g. small molecular weight drug molecules, large molecular weight drugs, peptide drugs, and macromolecular biological drugs), while surface modification with polymer can provide cellular targeting, controlled drug release, and/or evasion of phagocytosis by immune cells, depending on the polymer type. Polymeric nanocarriers have versatile architectures, such as linear, branched, and dendritic forms. In addition to the colloidal dispersion liquid state, the various types of nanoparticles can be formulated into the solid state, offering important unique advantages in formulation versatility and enhanced stability of the final product. This chapter describes the different types of nanocarriers, types of inhalation aerosol device platforms, liquid aerosols, respirable powders, and particle engineering design technologies for inhalation aerosols.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"37 4","pages":"202-218"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信