垫片和阀门保持室。

IF 1.8 4区 医学 Q3 RESPIRATORY SYSTEM
Sunalene Devadason
{"title":"垫片和阀门保持室。","authors":"Sunalene Devadason","doi":"10.1089/jamp.2025.87987.sd","DOIUrl":null,"url":null,"abstract":"<p><p>Spacers, primarily valved holding chambers (VHCs), are widely used to overcome some of the problems associated with the use of pressurized metered-dose inhalers (pMDIs). These include the difficulty experienced by patients in trying to coordinate the initiation of inhalation with the actuation of the pMDI. High oropharyngeal deposition of drug, which may result in both local and systemic side effects, is also a problem. Although the variability in output from pMDIs under optimized conditions in the laboratory is low, the variability when used in clinical practice is likely to increase considerably. Hence, the dose introduced into a holding chamber may vary significantly depending on the way in which the pMDI canister is handled before it is actuated. Several studies have shown that various design factors can influence the dose delivered from a holding chamber. These include spacer volume, shape, valve design, using multiple actuations, delay between actuation and inhalation, and construction material, which affects the level of electrostatic charge accumulating on the spacer surfaces. Several spacers which are made from low or anti-static materials are now available. Recommendations for optimal use of spacers, including inhalation techniques are outlined in this chapter, and vary according to patient age and inhalation coordination capability. Efficiency of drug delivery and lung deposition are also dependent on pMDI drug formulation and the patient's anatomical and physiological characteristics.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"38 4","pages":"211-215"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spacers and Valved Holding Chambers.\",\"authors\":\"Sunalene Devadason\",\"doi\":\"10.1089/jamp.2025.87987.sd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spacers, primarily valved holding chambers (VHCs), are widely used to overcome some of the problems associated with the use of pressurized metered-dose inhalers (pMDIs). These include the difficulty experienced by patients in trying to coordinate the initiation of inhalation with the actuation of the pMDI. High oropharyngeal deposition of drug, which may result in both local and systemic side effects, is also a problem. Although the variability in output from pMDIs under optimized conditions in the laboratory is low, the variability when used in clinical practice is likely to increase considerably. Hence, the dose introduced into a holding chamber may vary significantly depending on the way in which the pMDI canister is handled before it is actuated. Several studies have shown that various design factors can influence the dose delivered from a holding chamber. These include spacer volume, shape, valve design, using multiple actuations, delay between actuation and inhalation, and construction material, which affects the level of electrostatic charge accumulating on the spacer surfaces. Several spacers which are made from low or anti-static materials are now available. Recommendations for optimal use of spacers, including inhalation techniques are outlined in this chapter, and vary according to patient age and inhalation coordination capability. Efficiency of drug delivery and lung deposition are also dependent on pMDI drug formulation and the patient's anatomical and physiological characteristics.</p>\",\"PeriodicalId\":14940,\"journal\":{\"name\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"volume\":\"38 4\",\"pages\":\"211-215\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jamp.2025.87987.sd\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2025.87987.sd","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

隔离器,主要是有阀保持室(vhc),被广泛用于克服与使用加压计量吸入器(pmdi)相关的一些问题。这些包括患者在试图协调吸入起始与pMDI的启动时所经历的困难。药物的高口咽沉积,可能导致局部和全身的副作用,也是一个问题。尽管在实验室优化条件下pmdi输出的可变性很低,但在临床实践中使用时,可变性可能会大大增加。因此,引入保持室的剂量可能会因pMDI罐在启动前的处理方式而有很大差异。几项研究表明,不同的设计因素可以影响从保温室输送的剂量。这些因素包括隔离片的体积、形状、阀门设计、使用多个驱动、驱动和吸入之间的延迟以及结构材料,这些因素都会影响隔离片表面积累的静电电荷水平。现在有几种由低静电或抗静电材料制成的垫片可供选择。本章概述了最佳使用间隔器的建议,包括吸入技术,并根据患者的年龄和吸入协调能力而变化。药物传递和肺沉积的效率也取决于pMDI药物配方和患者的解剖生理特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spacers and Valved Holding Chambers.

Spacers, primarily valved holding chambers (VHCs), are widely used to overcome some of the problems associated with the use of pressurized metered-dose inhalers (pMDIs). These include the difficulty experienced by patients in trying to coordinate the initiation of inhalation with the actuation of the pMDI. High oropharyngeal deposition of drug, which may result in both local and systemic side effects, is also a problem. Although the variability in output from pMDIs under optimized conditions in the laboratory is low, the variability when used in clinical practice is likely to increase considerably. Hence, the dose introduced into a holding chamber may vary significantly depending on the way in which the pMDI canister is handled before it is actuated. Several studies have shown that various design factors can influence the dose delivered from a holding chamber. These include spacer volume, shape, valve design, using multiple actuations, delay between actuation and inhalation, and construction material, which affects the level of electrostatic charge accumulating on the spacer surfaces. Several spacers which are made from low or anti-static materials are now available. Recommendations for optimal use of spacers, including inhalation techniques are outlined in this chapter, and vary according to patient age and inhalation coordination capability. Efficiency of drug delivery and lung deposition are also dependent on pMDI drug formulation and the patient's anatomical and physiological characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信