{"title":"Spacers and Valved Holding Chambers.","authors":"Sunalene Devadason","doi":"10.1089/jamp.2025.87987.sd","DOIUrl":null,"url":null,"abstract":"<p><p>Spacers, primarily valved holding chambers (VHCs), are widely used to overcome some of the problems associated with the use of pressurized metered-dose inhalers (pMDIs). These include the difficulty experienced by patients in trying to coordinate the initiation of inhalation with the actuation of the pMDI. High oropharyngeal deposition of drug, which may result in both local and systemic side effects, is also a problem. Although the variability in output from pMDIs under optimized conditions in the laboratory is low, the variability when used in clinical practice is likely to increase considerably. Hence, the dose introduced into a holding chamber may vary significantly depending on the way in which the pMDI canister is handled before it is actuated. Several studies have shown that various design factors can influence the dose delivered from a holding chamber. These include spacer volume, shape, valve design, using multiple actuations, delay between actuation and inhalation, and construction material, which affects the level of electrostatic charge accumulating on the spacer surfaces. Several spacers which are made from low or anti-static materials are now available. Recommendations for optimal use of spacers, including inhalation techniques are outlined in this chapter, and vary according to patient age and inhalation coordination capability. Efficiency of drug delivery and lung deposition are also dependent on pMDI drug formulation and the patient's anatomical and physiological characteristics.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"38 4","pages":"211-215"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2025.87987.sd","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Spacers, primarily valved holding chambers (VHCs), are widely used to overcome some of the problems associated with the use of pressurized metered-dose inhalers (pMDIs). These include the difficulty experienced by patients in trying to coordinate the initiation of inhalation with the actuation of the pMDI. High oropharyngeal deposition of drug, which may result in both local and systemic side effects, is also a problem. Although the variability in output from pMDIs under optimized conditions in the laboratory is low, the variability when used in clinical practice is likely to increase considerably. Hence, the dose introduced into a holding chamber may vary significantly depending on the way in which the pMDI canister is handled before it is actuated. Several studies have shown that various design factors can influence the dose delivered from a holding chamber. These include spacer volume, shape, valve design, using multiple actuations, delay between actuation and inhalation, and construction material, which affects the level of electrostatic charge accumulating on the spacer surfaces. Several spacers which are made from low or anti-static materials are now available. Recommendations for optimal use of spacers, including inhalation techniques are outlined in this chapter, and vary according to patient age and inhalation coordination capability. Efficiency of drug delivery and lung deposition are also dependent on pMDI drug formulation and the patient's anatomical and physiological characteristics.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.