Chunmei Li, Suiyu Luo, Ai Guo, Ying Su, Yuhui Zhang, Yan Song, Mei Liu, Lu Wang, Yuanyuan Zhang
{"title":"Human Endometrium Derived Mesenchymal Stem Cells with Aberrant NOD1 Expression Are Associated with Ectopic Endometrial Lesion Formation.","authors":"Chunmei Li, Suiyu Luo, Ai Guo, Ying Su, Yuhui Zhang, Yan Song, Mei Liu, Lu Wang, Yuanyuan Zhang","doi":"10.15283/ijsc22200","DOIUrl":"10.15283/ijsc22200","url":null,"abstract":"<p><p>Nucleotide-binding oligomerization domain 1 (NOD1), a cytosolic pattern recognition receptor protein, plays a crucial role in innate immune responses. However, the functional expression of NOD1 in mesenchymal stem cells (MSCs) derived from endometriosis remains unclear. The aim of this study was to explore the functions of NOD1 in ectopic endometrial lesions. Tissues and MSCs were isolated from both normal endometrium and endometriosis. Immunohistochemistry and real time quantitative polymerase chain reaction (RT-qPCR) were used to determine the expression of NOD1 in the tissues/MSCs. Quantification of various cytokines was performed using RT-qPCR and enzyme-linked immunosorbent assay. To confirm the proliferation, invasion/migration, and apoptotic viabilities of the samples, Cell Counting Kit-8, clonogenic formation, transwell assays, and apoptotic experiments were conducted. Higher levels of NOD1 expression were detected in the ectopic-MSCs obtained from endometriosis compared to those from the endometrium. The expression of interleukin-8 was higher in the ectopic-MSCs than in the eutopic-MSCs. Pretreatment with NOD1 agonist significantly enhanced the proliferation and invasion/migration of eutopic-MSCs. Additionally, the NOD1 inhibitor ML-130 significantly reduced the proliferation, clone formation, invasion, and migration abilities of the ectopic-MSCs, having no effect on their apoptosis capacity. Our findings suggest that the expression of NOD1 in ectopic-MSCs may contribute to the progression of ectopic endometrial lesions.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"309-318"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming.","authors":"Su-Jeong Oh, Yoojin Seo, Hyung-Sik Kim","doi":"10.15283/ijsc23176","DOIUrl":"10.15283/ijsc23176","url":null,"abstract":"<p><p>Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with <i>in vitro</i> organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"213-223"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human Pluripotent Stem Cell-Derived Retinal Organoids: A Viable Platform for Investigating the Efficacy of Adeno-Associated Virus Gene Therapy.","authors":"Hyeon-Jin Na, Jae-Eun Kwon, Seung-Hyun Kim, Jiwon Ahn, Ok-Seon Kwon, Kyung-Sook Chung","doi":"10.15283/ijsc23071","DOIUrl":"10.15283/ijsc23071","url":null,"abstract":"<p><p>With recent advances in adeno-associated virus (AAV)-based gene therapy, efficacy and toxicity screening have become essential for developing gene therapeutic drugs for retinal diseases. Retinal organoids from human pluripotent stem cells (hPSCs) offer a more accessible and reproducible human test platform for evaluating AAV-based gene therapy. In this study, hPSCs were differentiated into retinal organoids composed of various types of retinal cells. The transduction efficiencies of AAV2 and AAV8, which are widely used in clinical trials of inherited retinal diseases, were analyzed using retinal organoids. These results suggest that retinal organoids derived from hPSCs serve as suitable screening platforms owing to their diverse retinal cell types and similarity to the human retina. In summary, we propose an optimal stepwise protocol that includes the generation of retinal organoids and analysis of AAV transduction efficacy, providing a comprehensive approach for evaluating AAV-based gene therapy for retinal diseases.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"204-211"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sun-Ju Ahn, Sungin Lee, Dayeon Kwon, Sejeong Oh, Chihye Park, Sooyeon Jeon, Jin Hee Lee, Tae Sung Kim, Il Ung Oh
{"title":"Essential Guidelines for Manufacturing and Application of Organoids.","authors":"Sun-Ju Ahn, Sungin Lee, Dayeon Kwon, Sejeong Oh, Chihye Park, Sooyeon Jeon, Jin Hee Lee, Tae Sung Kim, Il Ung Oh","doi":"10.15283/ijsc24047","DOIUrl":"10.15283/ijsc24047","url":null,"abstract":"<p><p>An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"102-112"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyun Mi Kang, Dong Sung Kim, Yong Kyun Kim, Kunyoo Shin, Sun-Ju Ahn, Cho-Rok Jung
{"title":"Guidelines for Manufacturing and Application of Organoids: Kidney.","authors":"Hyun Mi Kang, Dong Sung Kim, Yong Kyun Kim, Kunyoo Shin, Sun-Ju Ahn, Cho-Rok Jung","doi":"10.15283/ijsc24040","DOIUrl":"10.15283/ijsc24040","url":null,"abstract":"<p><p>Recent advancements in organoid technology have led to a vigorous movement towards utilizing it as a substitute for animal experiments. Organoid technology offers versatile applications, particularly in toxicity testing of pharmaceuticals or chemical substances. However, for the practical use in toxicity testing, minimal guidance is required to ensure reliability and relevance. This paper aims to provide minimal guidelines for practical uses of kidney organoids derived from human pluripotent stem cells as a toxicity evaluation model <i>in vitro</i>.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"141-146"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seunghee Lee, Yeri Alice Rim, Juryun Kim, Su Hyon Lee, Hye Jung Park, Hyounwoo Kim, Sun-Ju Ahn, Ji Hyeon Ju
{"title":"Guidelines for Manufacturing and Application of Organoids: Skin.","authors":"Seunghee Lee, Yeri Alice Rim, Juryun Kim, Su Hyon Lee, Hye Jung Park, Hyounwoo Kim, Sun-Ju Ahn, Ji Hyeon Ju","doi":"10.15283/ijsc24045","DOIUrl":"10.15283/ijsc24045","url":null,"abstract":"<p><p>To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for <i>in vitro</i> testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with <i>in vitro</i> methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"182-193"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guidelines for Manufacturing and Application of Organoids: Lung.","authors":"Kyungtae Lim, Mi-Ok Lee, Jinwook Choi, Jung-Hyun Kim, Eun-Mi Kim, Chang Gyu Woo, Chaeuk Chung, Yong-Hee Cho, Seok-Ho Hong, Young-Jae Cho, Sun-Ju Ahn","doi":"10.15283/ijsc24041","DOIUrl":"10.15283/ijsc24041","url":null,"abstract":"<p><p>The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"147-157"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guidelines for Manufacturing and Application of Organoids: Heart.","authors":"Hyang-Ae Lee, Dong-Hun Woo, Do-Sun Lim, Jisun Oh, C-Yoon Kim, Ok-Nam Bae, Sun-Ju Ahn","doi":"10.15283/ijsc24046","DOIUrl":"10.15283/ijsc24046","url":null,"abstract":"<p><p>Cardiac organoids have emerged as invaluable tools for assessing the impact of diverse substances on heart function. This report introduces guidelines for general requirements for manufacturing cardiac organoids and conducting cardiac organoid-based assays, encompassing protocols, analytical methodologies, and ethical considerations. In the quest to employ recently developed three-dimensional cardiac organoid models as substitutes for animal testing, it becomes imperative to establish robust criteria for evaluating organoid quality and conducting toxicity assessments. This guideline addresses this need, catering to regulatory requirements, and describes common standards for organoid quality and toxicity assessment methodologies, commensurate with current technological capabilities. While acknowledging the dynamic nature of technological progress and the potential for future comparative studies, this guideline serves as a foundational framework. It offers a comprehensive approach to standardized cardiac organoid testing, ensuring scientific rigor, reproducibility, and ethical integrity in investigations of cardiotoxicity, particularly through the utilization of human pluripotent stem cell-derived cardiac organoids.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"130-140"},"PeriodicalIF":2.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sungin Lee, Dayeon Kwon, Han Byeol Lee, Sooyeon Jeon, Chihye Park, Tae Sung Kim, Jin Hee Lee, Il Ung Oh, Sun-Ju Ahn
{"title":"Guidelines for Packaging, Transport, and Storage of Source Cells for Organoids.","authors":"Sungin Lee, Dayeon Kwon, Han Byeol Lee, Sooyeon Jeon, Chihye Park, Tae Sung Kim, Jin Hee Lee, Il Ung Oh, Sun-Ju Ahn","doi":"10.15283/ijsc24042","DOIUrl":"10.15283/ijsc24042","url":null,"abstract":"<p><p>This paper presents guidelines for the systematic management of packaging, storage, transportation, and traceability of source cells used for organoid research. Given the important role of source cells in organoid studies, it is important to ensure the preservation of their quality and integrity throughout transportation and distribution processes. The proposed guidelines, therefore, call for a cohesive strategy through these stages to minimize the risks of contamination, deterioration, and loss-threats that significantly compromise the safety, efficacy, and efficiency of source cells. Central to these guidelines is the quality control measures that include roles and responsibilities across the entire supply chain, with recommendations specific to packaging materials, transportation facilities, and storage management. Furthermore, the need for an integrated management system is emphasized, spanning from source cell collection to the final application. This system is crucial for maintaining the traceability and accountability of source cells, facilitating the sharing, distribution, and utilization on a global scale, and supporting to advance organoid research and development.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"113-119"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hye-Ran Moon, Seon Ju Mun, Tae Hun Kim, Hyemin Kim, Dukjin Kang, Suran Kim, Ji Hyun Shin, Dongho Choi, Sun-Ju Ahn, Myung Jin Son
{"title":"Guidelines for Manufacturing and Application of Organoids: Liver.","authors":"Hye-Ran Moon, Seon Ju Mun, Tae Hun Kim, Hyemin Kim, Dukjin Kang, Suran Kim, Ji Hyun Shin, Dongho Choi, Sun-Ju Ahn, Myung Jin Son","doi":"10.15283/ijsc24044","DOIUrl":"10.15283/ijsc24044","url":null,"abstract":"<p><p>Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"120-129"},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}