Ki-Sang Jo,Won-Jun Jo,Ainsley Mike Antao,Janardhan Keshav Karapurkar,Young Jun Park,Myeong-Jun Choi,Suresh Ramakrishna,Kye-Seong Kim
{"title":"在人胚胎干细胞中使用生物活性脂质 O-Cyclic Phytosphingosine-1-Phosphate 的高效内皮细胞分化方案。","authors":"Ki-Sang Jo,Won-Jun Jo,Ainsley Mike Antao,Janardhan Keshav Karapurkar,Young Jun Park,Myeong-Jun Choi,Suresh Ramakrishna,Kye-Seong Kim","doi":"10.15283/ijsc24068","DOIUrl":null,"url":null,"abstract":"Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated. In this study, the applicability of cP1P for endothelial cells (ECs) differentiation from hESCs was investigated an efficient method to obtain a high yield of functional ECs over several passages was standardized. The ECs derived from hESCs showed cellular and molecular characteristics similar to the native ECs. Thus, the results of this study open avenues for further research into cP1P-based stem cell differentiation for regenerative therapies.","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Endothelial Cell Differentiation Protocol Using Bioactive Lipid O-Cyclic Phytosphingosine-1-Phosphate in Human Embryonic Stem Cells.\",\"authors\":\"Ki-Sang Jo,Won-Jun Jo,Ainsley Mike Antao,Janardhan Keshav Karapurkar,Young Jun Park,Myeong-Jun Choi,Suresh Ramakrishna,Kye-Seong Kim\",\"doi\":\"10.15283/ijsc24068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated. In this study, the applicability of cP1P for endothelial cells (ECs) differentiation from hESCs was investigated an efficient method to obtain a high yield of functional ECs over several passages was standardized. The ECs derived from hESCs showed cellular and molecular characteristics similar to the native ECs. Thus, the results of this study open avenues for further research into cP1P-based stem cell differentiation for regenerative therapies.\",\"PeriodicalId\":14392,\"journal\":{\"name\":\"International journal of stem cells\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15283/ijsc24068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc24068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
An Efficient Endothelial Cell Differentiation Protocol Using Bioactive Lipid O-Cyclic Phytosphingosine-1-Phosphate in Human Embryonic Stem Cells.
Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated. In this study, the applicability of cP1P for endothelial cells (ECs) differentiation from hESCs was investigated an efficient method to obtain a high yield of functional ECs over several passages was standardized. The ECs derived from hESCs showed cellular and molecular characteristics similar to the native ECs. Thus, the results of this study open avenues for further research into cP1P-based stem cell differentiation for regenerative therapies.
期刊介绍:
International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.